Content
# Graphiti MCP Server 🧠
[](https://www.python.org/downloads/release/python-3100/)
[](https://opensource.org/licenses/MIT)
[](https://www.docker.com/)
> 🌟 A powerful knowledge graph server for AI agents, built with Neo4j and integrated with Model Context Protocol (MCP).
## 🚀 Features
- 🔄 Dynamic knowledge graph management with Neo4j
- 🤖 Seamless integration with OpenAI models
- 🔌 MCP (Model Context Protocol) support
- 🐳 Docker-ready deployment
- 🎯 Custom entity extraction capabilities
- 🔍 Advanced semantic search functionality
## 🛠️ Installation
### Prerequisites
- Docker and Docker Compose
- Python 3.10 or higher
- OpenAI API key
- Minimum 4GB RAM (recommended 8GB)
- 2GB free disk space
### Quick Start 🚀
1. Clone the repository:
```bash
git clone https://github.com/gifflet/graphiti-mcp-server.git
cd graphiti-mcp-server
```
2. Set up environment variables:
```bash
cp .env.sample .env
```
3. Edit `.env` with your configuration:
```bash
# Required for LLM operations
OPENAI_API_KEY=your_openai_api_key_here
MODEL_NAME=gpt-4.1-mini
# Optional: Custom OpenAI endpoint (e.g., for proxies)
# OPENAI_BASE_URL=https://api.openai.com/v1
# Neo4j Configuration (defaults work with Docker)
NEO4J_URI=bolt://neo4j:7687
NEO4J_USER=neo4j
NEO4J_PASSWORD=demodemo
```
4. Start the services:
```bash
docker compose up -d
```
5. **Verify installation:**
```bash
# Check if services are running
docker compose ps
# Check logs
docker compose logs graphiti-mcp
```
### Alternative: Environment Variables
You can run with environment variables directly:
```bash
OPENAI_API_KEY=your_key MODEL_NAME=gpt-4.1-mini docker compose up
```
## 🔧 Configuration
### Service Ports 🌐
| Service | Port | Purpose |
|---------|------|---------|
| Neo4j Browser | 7474 | Web interface for graph visualization |
| Neo4j Bolt | 7687 | Database connection |
| Graphiti MCP | 8000 | MCP server endpoint |
### Environment Variables 🔧
#### OpenAI Configuration
| Variable | Required | Default | Description |
|----------|----------|---------|-------------|
| `OPENAI_API_KEY` | ✅ | - | Your OpenAI API key |
| `OPENAI_BASE_URL` | ❌ | - | Custom OpenAI API endpoint (consumed by OpenAI SDK) |
| `MODEL_NAME` | ❌ | `gpt-4.1-mini` | Main LLM model to use |
| `SMALL_MODEL_NAME` | ❌ | `gpt-4.1-nano` | Small LLM model for lighter tasks |
| `LLM_TEMPERATURE` | ❌ | `0.0` | LLM temperature (0.0-2.0) |
| `EMBEDDER_MODEL_NAME` | ❌ | `text-embedding-3-small` | Embedding model |
#### Neo4j Configuration
| Variable | Required | Default | Description |
|----------|----------|---------|-------------|
| `NEO4J_URI` | ❌ | `bolt://neo4j:7687` | Neo4j connection URI |
| `NEO4J_USER` | ❌ | `neo4j` | Neo4j username |
| `NEO4J_PASSWORD` | ❌ | `demodemo` | Neo4j password |
#### Server Configuration
| Variable | Required | Default | Description |
|----------|----------|---------|-------------|
| `MCP_SERVER_HOST` | ❌ | - | MCP server host binding |
| `SEMAPHORE_LIMIT` | ❌ | `10` | Concurrent operation limit for LLM calls |
#### Azure OpenAI Configuration (Optional)
For Azure OpenAI deployments, use these environment variables instead of the standard OpenAI configuration:
| Variable | Required | Default | Description |
|----------|----------|---------|-------------|
| `AZURE_OPENAI_ENDPOINT` | ✅* | - | Azure OpenAI endpoint URL |
| `AZURE_OPENAI_API_VERSION` | ✅* | - | Azure OpenAI API version |
| `AZURE_OPENAI_DEPLOYMENT_NAME` | ✅* | - | Azure OpenAI deployment name |
| `AZURE_OPENAI_USE_MANAGED_IDENTITY` | ❌ | `false` | Use Azure managed identity for auth |
| `AZURE_OPENAI_EMBEDDING_ENDPOINT` | ❌ | - | Separate endpoint for embeddings |
| `AZURE_OPENAI_EMBEDDING_API_VERSION` | ❌ | - | API version for embeddings |
| `AZURE_OPENAI_EMBEDDING_DEPLOYMENT_NAME` | ❌ | - | Deployment name for embeddings |
| `AZURE_OPENAI_EMBEDDING_API_KEY` | ❌ | - | Separate API key for embeddings |
\* Required when using Azure OpenAI
**Notes:**
- `OPENAI_BASE_URL` is consumed directly by the OpenAI Python SDK, useful for proxy configurations or custom endpoints
- `SEMAPHORE_LIMIT` controls concurrent LLM API calls - decrease if you encounter rate limits, increase for higher throughput
- Azure configuration is an alternative to standard OpenAI - don't mix both configurations
### Neo4j Settings 🗄️
Default configuration for Neo4j:
- Username: `neo4j`
- Password: `demodemo`
- URI: `bolt://neo4j:7687` (within Docker network)
- Memory settings optimized for development
### Docker Environment Variables 🐳
You can run with environment variables directly:
```bash
OPENAI_API_KEY=your_key MODEL_NAME=gpt-4.1-mini docker compose up
```
For Azure OpenAI:
```bash
AZURE_OPENAI_ENDPOINT=https://your-resource.openai.azure.com \
AZURE_OPENAI_API_VERSION=2024-02-01 \
AZURE_OPENAI_DEPLOYMENT_NAME=your-deployment \
OPENAI_API_KEY=your_key \
docker compose up
```
## 🔌 Integration
### Cursor IDE Integration 🖥️
1. **Configure Cursor MCP settings:**
```json
{
"mcpServers": {
"Graphiti": {
"command": "uv",
"args": ["run", "graphiti_mcp_server.py"],
"env": {
"OPENAI_API_KEY": "your_key_here"
}
}
}
}
```
2. **For Docker-based setup:**
```json
{
"mcpServers": {
"Graphiti": {
"url": "http://localhost:8000/sse"
}
}
}
```
3. **Add Graphiti rules to Cursor's User Rules** (see `graphiti_cursor_rules.mdc`)
4. **Start an agent session in Cursor**
### Other MCP Clients
The server supports standard MCP transports:
- **SSE (Server-Sent Events):** `http://localhost:8000/sse`
- **WebSocket:** `ws://localhost:8000/ws`
- **Stdio:** Direct process communication
## 💻 Development
### Local Development Setup
1. **Install dependencies:**
```bash
# Using uv (recommended)
curl -LsSf https://astral.sh/uv/install.sh | sh
uv sync
# Or using pip
pip install -r requirements.txt
```
2. **Start Neo4j locally:**
```bash
docker run -d \
--name neo4j-dev \
-p 7474:7474 -p 7687:7687 \
-e NEO4J_AUTH=neo4j/demodemo \
neo4j:5.26.0
```
3. **Run the server:**
```bash
# Set environment variables
export OPENAI_API_KEY=your_key
export NEO4J_URI=bolt://localhost:7687
# Run with stdio transport
uv run graphiti_mcp_server.py
# Or with SSE transport
uv run graphiti_mcp_server.py --transport sse --use-custom-entities
```
### Testing
```bash
# Run basic connectivity test
curl http://localhost:8000/health
# Test MCP endpoint
curl http://localhost:8000/sse
```
## 🔍 Troubleshooting
### Common Issues
#### 🐳 Docker Issues
```bash
# Clean up and restart
docker compose down -v
docker compose up --build
# Check disk space
docker system df
```
### Logs and Debugging
```bash
# View all logs
docker compose logs -f
# View specific service logs
docker compose logs -f graphiti-mcp
docker compose logs -f neo4j
# Enable debug logging
docker compose up -e LOG_LEVEL=DEBUG
```
### Performance Issues
- **Memory:** Increase Neo4j heap size in `docker-compose.yml`
- **Storage:** Monitor Neo4j data volume usage
- **Network:** Check for firewall blocking ports 7474, 7687, 8000
## 🏗️ Architecture
```
┌─────────────────┐ ┌──────────────────┐ ┌─────────────────┐
│ MCP Client │ │ Graphiti MCP │ │ Neo4j │
│ (Cursor) │◄──►│ Server │◄──►│ Database │
│ │ │ (Port 8000) │ │ (Port 7687) │
└─────────────────┘ └──────────────────┘ └─────────────────┘
│
▼
┌──────────────────┐
│ OpenAI API │
│ (LLM Client) │
└──────────────────┘
```
### Components
- **Neo4j Database:** Graph storage and querying
- **Graphiti MCP Server:** API layer and LLM operations
- **OpenAI Integration:** Entity extraction and semantic processing
- **MCP Protocol:** Standardized AI agent communication
## 🤝 Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
## 📝 License
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
## 🙏 Acknowledgments
- [Neo4j](https://neo4j.com/) team for the amazing graph database
- [OpenAI](https://openai.com/) for their powerful LLM models
- [MCP community](https://modelcontextprotocol.io/) for the protocol specification
- [Graphiti Core](https://github.com/griptape-ai/graphiti) for the knowledge graph framework
---
**Need help?** Open an issue or check our [troubleshooting guide](#-troubleshooting) above.
You Might Also Like
Ollama
Ollama enables easy access to large language models on various platforms.

n8n
n8n is a secure workflow automation platform for technical teams with 400+...
OpenWebUI
Open WebUI is an extensible web interface for customizable applications.

Dify
Dify is a platform for AI workflows, enabling file uploads and self-hosting.

Zed
Zed is a high-performance multiplayer code editor from the creators of Atom.
MarkItDown MCP
markitdown-mcp is a lightweight MCP server for converting various URIs to Markdown.