Content
# README.md
# Resume Analyzer + LinkedIn/Naukri Job Fetcher + MCP Server
This project allows you to:
- Upload a Resume (PDF)
- Analyze Resume Summary, Skill Gaps, and Future Roadmap using EURI AI
- Auto-fetch matching jobs from LinkedIn and Naukri using Apify
- Wrap the job fetch functions into a FastMCP Server for integration with external tools like Claude Desktop, MCP Inspector, etc.
# 💪 Full Setup Instructions
## 1. Clone the Repository
```bash
git clone <your-repo-link>
cd resume_job_fetcher_project
```
## 2. Create Conda Virtual Environment (Recommended)
```bash
conda create -n resume_fetcher_env python=3.10
conda activate resume_fetcher_env
```
## 3. Install Required Packages
Using pip:
```bash
pip install -r requirements.txt
```
requirements.txt contains:
- streamlit
- pymupdf
- euriai
- python-dotenv
- apify-client
- fastmcp
Alternatively, using UV:
Install UV on Windows Powershell:
```bash
powershell -ExecutionPolicy ByPass -c "irm https://astral.sh/uv/install.ps1 | iex"
```
Install requirements:
```bash
uv pip install -r requirements.txt
```
## 4. Configure Environment Variables
Create a `.env` file:
```plaintext
EURI_API_KEY=your_real_euri_api_key_here
APIFY_API_TOKEN=your_real_apify_api_token_here
```
## 5. Run the Streamlit App
```bash
streamlit run app.py
```
## 6. Run MCP Server (FastMCP)
```bash
python mcp_server.py
```
## 7. Test MCP Server (Optional)
Install MCP Inspector:
```bash
npm install -g @modelcontextprotocol/inspector
```
Run the Inspector:
```bash
npx @modelcontextprotocol/inspector python mcp_server.py
```
# 🚀 UV-Based Project Setup (Optional)
```bash
uv init mcp-server-demo
cd mcp-server-demo
uv add "mcp[cli]"
```
To manually install MCP CLI:
```bash
pip install "mcp[cli]"
```
Running standalone MCP locally:
```bash
uv run mcp
```
# 📆 Project Structure
```plaintext
resume_job_fetcher_project/
├── app.py # Streamlit frontend app
├── mcp_server.py # FastMCP server exposing job fetchers
├── requirements.txt
├── README.md
└── .env # API keys configuration
```
# 🌟 Technology Stack
| Component | Technology |
| :--------------------- | :------------------------------- |
| Resume Analysis | EURI AI (GPT-4.1-nano) |
| Job Fetching | Apify (LinkedIn + Naukri Actors) |
| Frontend | Streamlit |
| MCP Server | FastMCP |
| Environment Management | Conda / UV |
| Inspector Tool | MCP Inspector |
# 📃 Important Links
- [EURI API Documentation](https://api.euron.one/docs)
- [Apify API Documentation](https://docs.apify.com/)
- [FastMCP GitHub](https://github.com/modelcontextprotocol/fastmcp)
- [Streamlit Documentation](https://docs.streamlit.io/)
- [UV Installation Guide](https://docs.astral.sh/uv/getting-started/installation/#__tabbed_1_2)
- [MCP Inspector GitHub](https://github.com/modelcontextprotocol/inspector)
# 🔫 Quick Commands Summary
| Task | Command |
| :------------------- | :---------------------------------------------------------------------------- |
| Create Conda Env | `conda create -n resume_fetcher_env python=3.10` |
| Activate Env | `conda activate resume_fetcher_env` |
| Install Packages | `pip install -r requirements.txt` or `uv pip install -r requirements.txt` |
| Run App | `streamlit run app.py` |
| Run MCP Server | `python mcp_server.py` |
| Launch MCP Inspector | `npx @modelcontextprotocol/inspector python mcp_server.py` |
# 💪 Conclusion
- Resume Analyzer + Live Job Fetcher using AI 🚀
- Fully ready MCP tool server integration
- Modular, scalable, and professional setup
# 🚀 Let's Build Smarter Applications Faster with AI, Apify, MCP & Streamlit!
You Might Also Like
OpenWebUI
Open WebUI is an extensible web interface for customizable applications.

NextChat
NextChat is a light and fast AI assistant supporting Claude, DeepSeek, GPT4...

cherry-studio
Cherry Studio is a multilingual project for creative collaboration.

LibreChat
LibreChat is an open-source chat platform for seamless communication.

Continue
Continue is an open-source project for seamless server management.

repomix
Repomix packages your codebase into AI-friendly formats for easy use.