Content
# 🚀 Zerodha Market Connect Pro
An advanced algorithmic trading system for Zerodha, featuring automated trading strategies, real-time market analysis, and LLM-powered decision making. Built with Python and integrated with Zerodha's Kite API.
## 📝 Description
Zerodha Market Connect Pro (MCP) is a comprehensive algorithmic trading platform designed specifically for Zerodha traders. This system combines cutting-edge technology with sophisticated trading strategies to provide a powerful automated trading solution. Here's what makes it special:
- **Intelligent Trading**: Leverages Large Language Models (LLMs) for market analysis and trading decisions
- **Real-time Processing**: Handles live market data with low-latency execution and websocket streaming
- **Risk Management**: Implements robust risk controls including position sizing, stop-losses, and exposure limits
- **Strategy Flexibility**: Supports multiple trading strategies with customizable parameters
- **Professional Tools**: Includes advanced technical analysis, volume profiling, and price action pattern recognition
- **Developer Friendly**: Well-documented API, extensive testing suite, and Docker support for easy deployment
Perfect for both professional traders looking to automate their strategies and developers interested in algorithmic trading.



## 🌟 Key Features
- **🤖 Automated Trading**
- Real-time order execution
- Multiple strategy support
- Customizable entry/exit rules
- Risk management automation
- **📊 Advanced Market Analysis**
- Real-time market data processing
- Technical indicator calculations
- Volume profile analysis
- Price action patterns
- **🧠 LLM Integration**
- Natural language trading commands
- Market sentiment analysis
- Strategy optimization
- Trading journal analysis
- **⚡ High Performance**
- Asynchronous operations
- Efficient data handling
- Real-time websocket streaming
- Low-latency execution
- **🛡️ Risk Management**
- Position sizing rules
- Stop-loss automation
- Exposure limits
- Portfolio diversification
## 🔧 Technical Architecture
```
zerodha_mcp/
├── auth/ # Authentication and session management
├── trading/ # Core trading functionality
├── analysis/ # Market analysis and indicators
└── llm/ # Language model integration
```
## 📋 Prerequisites
- Python 3.8 or higher
- [Zerodha Kite](https://kite.zerodha.com/) trading account
- API credentials from [Zerodha Developer Console](https://developers.kite.trade/)
- OpenAI API key (for LLM features)
## 🚀 Quick Start
1. **Clone the Repository**
```bash
git clone https://github.com/SirCharan/zerodha-market-connect-pro.git
cd zerodha-market-connect-pro
```
2. **Set Up Environment**
```bash
# Create and activate virtual environment
python -m venv .venv
source .venv/bin/activate # Linux/macOS
.venv\Scripts\activate # Windows
# Install dependencies
pip install -r requirements.txt
```
3. **Configure Credentials**
```bash
# Create .env file
cp .env.example .env
# Edit .env with your credentials
ZERODHA_API_KEY=your_api_key
ZERODHA_API_SECRET=your_api_secret
OPENAI_API_KEY=your_openai_api_key # Optional
```
4. **Start Trading System**
```bash
python main.py
```
## 📊 Trading Strategies
### Built-in Strategies
1. **Moving Average Crossover**
```python
from zerodha_mcp.trading.strategies import MACrossStrategy
strategy = MACrossStrategy(
fast_period=10,
slow_period=30,
timeframe="5min"
)
```
2. **RSI Mean Reversion**
```python
from zerodha_mcp.trading.strategies import RSIMeanReversionStrategy
strategy = RSIMeanReversionStrategy(
period=14,
overbought=70,
oversold=30
)
```
### Custom Strategy Development
Create your own strategy by inheriting from the base Strategy class:
```python
from zerodha_mcp.trading.base import Strategy
class MyCustomStrategy(Strategy):
def __init__(self, **params):
super().__init__()
self.params = params
def generate_signals(self, data):
# Implement your strategy logic here
pass
def on_trade(self, trade):
# Handle trade events
pass
```
## 🔧 Configuration
### Trading Parameters
Edit `config/default.yaml` to customize trading behavior:
```yaml
trading:
default_quantity: 1
max_position_size: 100000
stop_loss_percent: 2.0
target_profit_percent: 4.0
risk_management:
max_daily_loss: 10000
max_trades_per_day: 10
max_open_positions: 5
strategies:
moving_average_crossover:
enabled: true
timeframe: "5min"
fast_period: 10
slow_period: 30
```
## 🐳 Docker Deployment
1. **Build Image**
```bash
docker build -t zerodha-market-connect-pro .
```
2. **Run Container**
```bash
docker run -d \
--name zerodha-market-connect-pro \
-v $(pwd)/config:/app/config \
-v $(pwd)/.env:/app/.env \
zerodha-market-connect-pro
```
## 📈 Performance Monitoring
### Real-time Monitoring
```bash
# View trading logs
tail -f mcp.log
# Check system status
python -m zerodha_mcp.status
# Generate performance report
python -m zerodha_mcp.report
```
### Metrics Dashboard
Access the web dashboard at `http://localhost:5000/dashboard` for:
- P&L visualization
- Strategy performance
- Risk metrics
- Trade history
## 🧪 Development
### Running Tests
```bash
# Run all tests
pytest
# Run with coverage
pytest --cov=zerodha_mcp tests/
# Run specific test category
pytest tests/test_trading.py
```
### Code Quality
```bash
# Format code
black zerodha_mcp tests
# Check typing
mypy zerodha_mcp
# Run linter
flake8 zerodha_mcp tests
```
## 🔍 Troubleshooting
### Common Issues
1. **Authentication Errors**
- Verify API credentials in `.env`
- Check token expiration
- Ensure API access is enabled
2. **Order Placement Failures**
- Verify account balance
- Check trading hours
- Review order parameters
3. **Strategy Issues**
- Validate configuration
- Check data availability
- Review error logs
## 📚 API Documentation
### Trading Operations
```python
from zerodha_mcp import ZerodhaMCP
# Initialize client
client = ZerodhaMCP()
# Place order
order = client.place_order(
symbol="RELIANCE",
quantity=1,
side="BUY",
order_type="MARKET"
)
# Get positions
positions = client.get_positions()
# Get holdings
holdings = client.get_holdings()
```
### Market Data
```python
# Get historical data
data = client.get_historical_data(
symbol="RELIANCE",
interval="5minute",
from_date="2024-01-01",
to_date="2024-01-31"
)
# Stream live ticks
client.subscribe(["RELIANCE"], callback=on_tick)
```
## 📄 License
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
## 🤝 Contributing
1. Fork the repository
2. Create feature branch (`git checkout -b feature/AmazingFeature`)
3. Commit changes (`git commit -m 'Add AmazingFeature'`)
4. Push to branch (`git push origin feature/AmazingFeature`)
5. Open a Pull Request
## 📬 Support & Contact
- 📧 Email: charandeepkapoor3@gmail.com
- 💻 GitHub: [@SirCharan](https://github.com/SirCharan)
- 📝 Issues: [GitHub Issues](https://github.com/SirCharan/zerodha-market-connect-pro/issues)
- 📚 Wiki: [Project Documentation](https://github.com/SirCharan/zerodha-market-connect-pro/wiki)
## 🙏 Acknowledgments
- [Zerodha](https://zerodha.com/) for their excellent trading platform
- [KiteConnect](https://kite.trade/) for the robust API
- All contributors who have helped improve this project
You Might Also Like
hexstrike-ai
HexStrike AI is an AI-powered MCP cybersecurity automation platform with 150+ tools.
solana-agent-kit
An open-source toolkit for AI agents to interact with Solana protocols.

Stripe
The Stripe Agent Toolkit integrates agent frameworks with Stripe APIs for...
Companion
Companion is a utility for testing and debugging MCP servers on macOS, iOS,...
Companion
Companion is a utility for testing MCP servers on macOS, iOS, and visionOS.
Companion
Your neighborhood friendly MCP utility for macOS, iOS, and visionOS