Content
<div align="center" style="margin: 0 auto; max-width: 80%;">
<picture>
<source media="(prefers-color-scheme: dark)" srcset="./static/logo_white.svg">
<source media="(prefers-color-scheme: light)" srcset="./static/logo_black.svg">
<img alt="mcp use logo" src="./static/logo_white.svg" width="80%" style="margin: 20px auto;">
</picture>
</div>
<h1 align="center">Unified MCP Client Library</h1>
<p align="center">
<a href="https://www.npmjs.com/package/mcp-use" alt="NPM Downloads">
<img src="https://img.shields.io/npm/dw/mcp-use.svg"/></a>
<a href="https://www.npmjs.com/package/mcp-use" alt="NPM Version">
<img src="https://img.shields.io/npm/v/mcp-use.svg"/></a>
<a href="https://docs.mcp-use.io" alt="Documentation">
<img src="https://img.shields.io/badge/docs-mcp--use.io-blue" /></a>
<a href="https://mcp-use.io" alt="Website">
<img src="https://img.shields.io/badge/website-mcp--use.io-blue" /></a>
<a href="https://github.com/mcp-use/mcp-use-ts/blob/main/LICENSE" alt="License">
<img src="https://img.shields.io/github/license/mcp-use/mcp-use-ts" /></a>
<a href="https://eslint.org" alt="Code style: ESLint">
<img src="https://img.shields.io/badge/code%20style-eslint-4B32C3.svg" /></a>
<a href="https://github.com/mcp-use/mcp-use-ts/stargazers" alt="GitHub stars">
<img src="https://img.shields.io/github/stars/mcp-use/mcp-use-ts?style=social" /></a>
<a href="https://discord.gg/XkNkSkMz3V" alt="Discord">
<img src="https://dcbadge.limes.pink/api/server/XkNkSkMz3V?style=flat" /></a>
</p>
🌐 **MCP Client** is the open-source way to connect **any LLM to any MCP server** in TypeScript/Node.js, letting you build custom agents with tool access without closed-source dependencies.
💡 Let developers easily connect any LLM via LangChain.js to tools like web browsing, file operations, 3D modeling, and more.
---
## ✨ Key Features
| Feature | Description |
| ------------------------------- | -------------------------------------------------------------------------- |
| 🔄 **Ease of use** | Create an MCP-capable agent in just a few lines of TypeScript. |
| 🤖 **LLM Flexibility** | Works with any LangChain.js-supported LLM that supports tool calling. |
| 🌐 **HTTP Support** | Direct SSE/HTTP connection to MCP servers. |
| ⚙️ **Dynamic Server Selection** | Agents select the right MCP server from a pool on the fly. |
| 🧩 **Multi-Server Support** | Use multiple MCP servers in one agent. |
| 🛡️ **Tool Restrictions** | Restrict unsafe tools like filesystem or network. |
| 🔧 **Custom Agents** | Build your own agents with LangChain.js adapter or implement new adapters. |
---
## 🚀 Quick Start
### Requirements
- Node.js 22.0.0 or higher
- npm, yarn, or pnpm (examples use pnpm)
### Installation
```bash
# Install from npm
npm install mcp-use
# LangChain.js and your LLM provider (e.g., OpenAI)
npm install langchain @langchain/openai dotenv
# Optional: Install observability packages for monitoring
npm install langfuse langfuse-langchain # For Langfuse observability
```
Create a `.env`:
```ini
OPENAI_API_KEY=your_api_key
```
### Basic Usage
```ts
import { ChatOpenAI } from '@langchain/openai'
import { MCPAgent, MCPClient } from 'mcp-use'
import 'dotenv/config'
async function main() {
// 1. Configure MCP servers
const config = {
mcpServers: {
playwright: { command: 'npx', args: ['@playwright/mcp@latest'] }
}
}
const client = MCPClient.fromDict(config)
// 2. Create LLM
const llm = new ChatOpenAI({ modelName: 'gpt-4o' })
// 3. Instantiate agent
const agent = new MCPAgent({ llm, client, maxSteps: 20 })
// 4. Run query
const result = await agent.run('Find the best restaurant in Tokyo using Google Search')
console.log('Result:', result)
}
main().catch(console.error)
```
---
## 🔧 API Methods
### MCPAgent Methods
The `MCPAgent` class provides several methods for executing queries with different output formats:
#### `run(query: string, maxSteps?: number): Promise<string>`
Executes a query and returns the final result as a string.
```ts
const result = await agent.run('What tools are available?')
console.log(result)
```
#### `stream(query: string, maxSteps?: number): AsyncGenerator<AgentStep, string, void>`
Yields intermediate steps during execution, providing visibility into the agent's reasoning process.
```ts
const stream = agent.stream('Search for restaurants in Tokyo')
for await (const step of stream) {
console.log(`Tool: ${step.action.tool}, Input: ${step.action.toolInput}`)
console.log(`Result: ${step.observation}`)
}
```
#### `streamEvents(query: string, maxSteps?: number): AsyncGenerator<StreamEvent, void, void>`
Yields fine-grained LangChain StreamEvent objects, enabling token-by-token streaming and detailed event tracking.
```ts
const eventStream = agent.streamEvents('What is the weather today?')
for await (const event of eventStream) {
// Handle different event types
switch (event.event) {
case 'on_chat_model_stream':
// Token-by-token streaming from the LLM
if (event.data?.chunk?.content) {
process.stdout.write(event.data.chunk.content)
}
break
case 'on_tool_start':
console.log(`\nTool started: ${event.name}`)
break
case 'on_tool_end':
console.log(`Tool completed: ${event.name}`)
break
}
}
```
### Key Differences
- **`run()`**: Best for simple queries where you only need the final result
- **`stream()`**: Best for debugging and understanding the agent's tool usage
- **`streamEvents()`**: Best for real-time UI updates with token-level streaming
## 🔄 AI SDK Integration
The library provides built-in utilities for integrating with [Vercel AI SDK](https://sdk.vercel.ai/), making it easy to build streaming UIs with React hooks like `useCompletion` and `useChat`.
### Installation
```bash
npm install ai @langchain/anthropic
```
### Basic Usage
```ts
import { ChatAnthropic } from '@langchain/anthropic'
import { LangChainAdapter } from 'ai'
import { createReadableStreamFromGenerator, MCPAgent, MCPClient, streamEventsToAISDK } from 'mcp-use'
async function createApiHandler() {
const config = {
mcpServers: {
everything: { command: 'npx', args: ['-y', '@modelcontextprotocol/server-everything'] }
}
}
const client = new MCPClient(config)
const llm = new ChatAnthropic({ model: 'claude-sonnet-4-20250514' })
const agent = new MCPAgent({ llm, client, maxSteps: 5 })
return async (request: { prompt: string }) => {
const streamEvents = agent.streamEvents(request.prompt)
const aiSDKStream = streamEventsToAISDK(streamEvents)
const readableStream = createReadableStreamFromGenerator(aiSDKStream)
return LangChainAdapter.toDataStreamResponse(readableStream)
}
}
```
### Enhanced Usage with Tool Visibility
```ts
import { streamEventsToAISDKWithTools } from 'mcp-use'
async function createEnhancedApiHandler() {
const config = {
mcpServers: {
everything: { command: 'npx', args: ['-y', '@modelcontextprotocol/server-everything'] }
}
}
const client = new MCPClient(config)
const llm = new ChatAnthropic({ model: 'claude-sonnet-4-20250514' })
const agent = new MCPAgent({ llm, client, maxSteps: 8 })
return async (request: { prompt: string }) => {
const streamEvents = agent.streamEvents(request.prompt)
// Enhanced stream includes tool usage notifications
const enhancedStream = streamEventsToAISDKWithTools(streamEvents)
const readableStream = createReadableStreamFromGenerator(enhancedStream)
return LangChainAdapter.toDataStreamResponse(readableStream)
}
}
```
### Next.js API Route Example
```ts
// pages/api/chat.ts or app/api/chat/route.ts
import { ChatAnthropic } from '@langchain/anthropic'
import { LangChainAdapter } from 'ai'
import { createReadableStreamFromGenerator, MCPAgent, MCPClient, streamEventsToAISDK } from 'mcp-use'
export async function POST(req: Request) {
const { prompt } = await req.json()
const config = {
mcpServers: {
everything: { command: 'npx', args: ['-y', '@modelcontextprotocol/server-everything'] }
}
}
const client = new MCPClient(config)
const llm = new ChatAnthropic({ model: 'claude-sonnet-4-20250514' })
const agent = new MCPAgent({ llm, client, maxSteps: 10 })
try {
const streamEvents = agent.streamEvents(prompt)
const aiSDKStream = streamEventsToAISDK(streamEvents)
const readableStream = createReadableStreamFromGenerator(aiSDKStream)
return LangChainAdapter.toDataStreamResponse(readableStream)
}
finally {
await client.closeAllSessions()
}
}
```
### Frontend Integration
```tsx
// components/Chat.tsx
import { useCompletion } from 'ai/react'
export function Chat() {
const { completion, input, handleInputChange, handleSubmit } = useCompletion({
api: '/api/chat',
})
return (
<div>
<div>{completion}</div>
<form onSubmit={handleSubmit}>
<input
value={input}
onChange={handleInputChange}
placeholder="Ask me anything..."
/>
</form>
</div>
)
}
```
### Available AI SDK Utilities
- **`streamEventsToAISDK()`**: Converts streamEvents to basic text stream
- **`streamEventsToAISDKWithTools()`**: Enhanced stream with tool usage notifications
- **`createReadableStreamFromGenerator()`**: Converts async generator to ReadableStream
---
## 📂 Configuration File
You can store servers in a JSON file:
```json
{
"mcpServers": {
"playwright": {
"command": "npx",
"args": ["@playwright/mcp@latest"]
}
}
}
```
Load it:
```ts
import { MCPClient } from 'mcp-use'
const client = MCPClient.fromConfigFile('./mcp-config.json')
```
---
## 📚 Examples
We provide a comprehensive set of examples demonstrating various use cases. All examples are located in the `examples/` directory with a dedicated README.
### Running Examples
```bash
# Install dependencies
npm install
# Run any example
npm run example:airbnb # Search accommodations with Airbnb
npm run example:browser # Browser automation with Playwright
npm run example:chat # Interactive chat with memory
npm run example:stream # Demonstrate streaming methods (stream & streamEvents)
npm run example:stream_events # Comprehensive streamEvents() examples
npm run example:ai_sdk # AI SDK integration with streaming
npm run example:filesystem # File system operations
npm run example:http # HTTP server connection
npm run example:everything # Test MCP functionalities
npm run example:multi # Multiple servers in one session
```
### Example Highlights
- **Browser Automation**: Control browsers to navigate websites and extract information
- **File Operations**: Read, write, and manipulate files through MCP
- **Multi-Server**: Combine multiple MCP servers (Airbnb + Browser) in a single task
- **Sandboxed Execution**: Run MCP servers in isolated E2B containers
- **OAuth Flows**: Authenticate with services like Linear using OAuth2
- **Streaming Methods**: Demonstrate both step-by-step and token-level streaming
- **AI SDK Integration**: Build streaming UIs with Vercel AI SDK and React hooks
See the [examples README](./examples/README.md) for detailed documentation and prerequisites.
---
## 🔄 Multi-Server Example
```ts
const config = {
mcpServers: {
airbnb: { command: 'npx', args: ['@openbnb/mcp-server-airbnb'] },
playwright: { command: 'npx', args: ['@playwright/mcp@latest'] }
}
}
const client = MCPClient.fromDict(config)
const agent = new MCPAgent({ llm, client, useServerManager: true })
await agent.run('Search Airbnb in Barcelona, then Google restaurants nearby')
```
---
## 🔒 Tool Access Control
```ts
const agent = new MCPAgent({
llm,
client,
disallowedTools: ['file_system', 'network']
})
```
## 👥 Contributors
<table>
<tr>
<td align="center" style="word-wrap: break-word; width: 150.0; height: 150.0">
<a href=https://github.com/pietrozullo>
<img src=https://avatars.githubusercontent.com/u/62951181?v=4 width="100;" style="border-radius:50%;align-items:center;justify-content:center;overflow:hidden;padding-top:10px" alt=Pietro Zullo/>
<br />
<sub style="font-size:14px"><b>Pietro Zullo</b></sub>
</a>
</td>
<td align="center" style="word-wrap: break-word; width: 150.0; height: 150.0">
<a href=https://github.com/zandko>
<img src=https://avatars.githubusercontent.com/u/37948383?v=4 width="100;" style="border-radius:50%;align-items:center;justify-content:center;overflow:hidden;padding-top:10px" alt=Zane/>
<br />
<sub style="font-size:14px"><b>Zane</b></sub>
</a>
</td>
<td align="center" style="word-wrap: break-word; width: 150.0; height: 150.0">
<a href=https://github.com/Pederzh>
<img src=https://avatars.githubusercontent.com/u/11487621?v=4 width="100;" style="border-radius:50%;align-items:center;justify-content:center;overflow:hidden;padding-top:10px" alt=Luigi Pederzani/>
<br />
<sub style="font-size:14px"><b>Luigi Pederzani</b></sub>
</a>
</td>
</tr>
</table>
<!-- Contributors section will be automatically generated here -->
## 📜 License
MIT © [Zane](https://github.com/zandko)
You Might Also Like
Ollama
Ollama enables easy access to large language models on various platforms.

n8n
n8n is a secure workflow automation platform for technical teams with 400+...
OpenWebUI
Open WebUI is an extensible web interface for customizable applications.

Dify
Dify is a platform for AI workflows, enabling file uploads and self-hosting.

Zed
Zed is a high-performance multiplayer code editor from the creators of Atom.
MarkItDown MCP
markitdown-mcp is a lightweight MCP server for converting various URIs to Markdown.