Content
# mcpforStudyAIDevelop
An MCP that assists AI developers in refining requirements, module design, and technical architecture design.
# 🚀 MCP AI Development Assistant - Final Configuration Guide
## ✨ Overview of Optimization Features
### 🔧 Core Tools (5)
1. **requirement_clarifier** - Requirement Clarification Assistant
2. **requirement_manager** - Requirement Document Manager
3. **architecture_designer** - Architecture Design Generator
4. **export_final_document** - Export Complete Document ⭐ New
5. **view_requirements_status** - View Requirement Status ⭐ New
### 💾 Persistence Storage Features
- ✅ **Auto-Save**: Every operation is automatically saved to a file.
- ✅ **History**: Complete operation history tracking.
- ✅ **Multi-Format Export**: JSON + Markdown dual format.
- ✅ **Custom Directory**: Supports environment variable configuration for storage location.
## 📁 Configuration Methods
### Method 1: Claude Desktop Configuration (Recommended)
1. **Locate the Configuration File**
```
Windows: %APPDATA%\Claude\claude_desktop_config.json
macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Linux: ~/.config/claude/claude_desktop_config.json
```
2. **Add Configuration Content**
```json
{
"mcpServers": {
"ai-develop-assistant": {
"command": "python",
"args": [
"path\\AIDevlopStudy.py"
],
"env": {
"MCP_STORAGE_DIR": "your save path"
}
}
}
}
```
3. **Restart Claude Desktop**
### Method 2: Environment Variable Configuration
Create a `.env` file:
```bash
# Custom storage directory
MCP_STORAGE_DIR=./mcp_data
# Or set to another path
# MCP_STORAGE_DIR=D:/MyProjects/mcp_storage
```
## 📊 Storage Structure
After successful configuration, the following files will be generated in the specified directory:
```
mcp_data/
├── requirements.json # Real-time requirement document
├── history.json # Operation history record
├── final_document_*.json # Exported complete document
└── final_document_*.md # Markdown format report
```
## 🎯 Usage Process
### Complete Project Analysis Process
1. **Requirement Clarification Stage**
```
requirement_clarifier("I want to create a Web AI resource sharing website")
↓
requirement_manager("Project Type: Web Application...", "Project Overview")
↓
view_requirements_status() # Check current status
```
2. **Architecture Design Stage**
```
architecture_designer("Architecture for Web AI Resource Sharing Website")
↓
view_requirements_status() # Confirm completeness
```
3. **Document Export Stage**
```
export_final_document() # Export complete project document
```
## 🧪 Testing and Validation
Run the test script to validate the configuration:
```bash
# Activate virtual environment
.venv\Scripts\activate
# Run tests
python test_optimized_mcp.py
```
Expected output:
```
🧪 Testing the optimized MCP AI Development Assistant...
📁 Storage Directory: test_mcp_data
✅ Found 5 tools
✅ All functionality tests passed
✅ Generated 4 files
🎉 Optimized MCP testing completed!
```
## 💡 Usage Tips
### 1. Before Starting the Project
- Set the `MCP_STORAGE_DIR` environment variable.
- Ensure the directory has write permissions.
### 2. During Requirement Analysis
- Regularly use `view_requirements_status` to check progress.
- Each clarification will be automatically saved.
### 3. After Project Completion
- Use `export_final_document` to export the complete document.
- The Markdown file can serve as the project README base.
### 4. Multi-Project Management
- Set different storage directories for different projects.
- Use the project name as the directory name.
## 🔍 Troubleshooting
### Common Issues
1. **Storage Directory Permission Issues**
```bash
# Ensure the directory is writable
mkdir -p ./mcp_data
chmod 755 ./mcp_data
```
2. **Environment Variable Not Taking Effect**
```bash
# Check the environment variable
echo $MCP_STORAGE_DIR
# Reset it
export MCP_STORAGE_DIR="./mcp_data"
```
3. **File Encoding Issues**
- All files use UTF-8 encoding.
- Supports Chinese content.
## 🎉 Summary of Advantages
### Improvements Over the Original Version
- ✅ **Data Persistence**: No more loss of analysis results.
- ✅ **History Tracking**: Complete operation records.
- ✅ **Document Export**: Automatically generates project documents.
- ✅ **Status Viewing**: Real-time understanding of analysis progress.
- ✅ **Flexible Configuration**: Customizable storage locations.
### Practical Value
- 🚀 **Increased Efficiency**: Avoids repetitive analysis.
- 📋 **Complete Documentation**: Automatically generates project documents.
- 🔄 **Controllable Process**: Check analysis status at any time.
- 💾 **Data Security**: Local storage, privacy protection.
---
**🎯 Your MCP AI Development Assistant is now fully optimized, supporting persistent storage and complete project document management!**
Get started:
1. Configure Claude Desktop.
2. Restart Claude Desktop.
3. Begin your AI project analysis journey!
You Might Also Like
Ollama
Ollama enables easy access to large language models on various platforms.

n8n
n8n is a secure workflow automation platform for technical teams with 400+...
OpenWebUI
Open WebUI is an extensible web interface for customizable applications.

Dify
Dify is a platform for AI workflows, enabling file uploads and self-hosting.

Zed
Zed is a high-performance multiplayer code editor from the creators of Atom.
MarkItDown MCP
markitdown-mcp is a lightweight MCP server for converting various URIs to Markdown.