Content
# 🚀 MCPOmni Connect - Complete AI Platform: OmniAgent + Universal MCP Client
[](https://pepy.tech/projects/mcpomni-connect)
[](https://www.python.org/downloads/)
[](LICENSE)
[](https://github.com/Abiorh001/mcp_omni_connect/actions)
[](https://badge.fury.io/py/mcpomni-connect)
[](https://github.com/Abiorh001/mcp_omni_connect/commits/main)
[](https://github.com/Abiorh001/mcp_omni_connect/issues)
[](https://github.com/Abiorh001/mcp_omni_connect/pulls)
**MCPOmni Connect** is the complete AI platform that evolved from a world-class MCP client into a revolutionary ecosystem. It now includes **OmniAgent** - the ultimate AI agent builder born from MCPOmni Connect's powerful foundation. Build production-ready AI agents, use the advanced MCP CLI, or combine both for maximum power.
## 📋 Table of Contents
### 🚀 **Getting Started**
- [🚀 Quick Start (2 minutes)](#-quick-start-2-minutes)
- [🌟 What is MCPOmni Connect?](#-complete-ai-platform---two-powerful-systems)
- [💡 What Can You Build? (Examples)](#-what-can-you-build-see-real-examples)
- [🎯 Choose Your Path](#-getting-started---choose-your-path)
### 📖 **Core Information**
- [✨ Key Features](#-key-features)
- [🏗️ Architecture](#️-architecture)
- [🔥 Local Tools System](#-local-tools-system---create-custom-ai-tools)
### ⚙️ **Setup & Configuration**
- [⚙️ Configuration Guide](#️-configuration-guide)
- [🧠 Vector Database Setup](#-vector-database--smart-memory-setup-complete-guide)
- [📊 Tracing & Observability](#-opik-tracing--observability-setup-latest-feature)
### 🛠️ **Development & Integration**
- [🧑💻 Examples & Usage](#-examples)
- [🛠️ Developer Integration](#️-developer-integration)
- [🧪 Testing](#-testing)
### 📚 **Reference & Support**
- [🔍 Troubleshooting](#-troubleshooting)
- [🤝 Contributing](#-contributing)
- [📖 Documentation](#-documentation)
---
## 🚀 Quick Start (2 minutes)
**New to MCPOmni Connect?** Get started in 2 minutes:
### Step 1: Install
```bash
# Install with uv (recommended)
uv add mcpomni-connect
# Or with pip
pip install mcpomni-connect
```
### Step 2: Set API Key
```bash
# Create .env file with your LLM API key
echo "LLM_API_KEY=your_openai_api_key_here" > .env
```
### Step 3: Run Examples
```bash
# Try the basic MCP client
python examples/basic.py
# Or try OmniAgent with custom tools
python examples/omni_agent_example.py
# Or use the advanced MCP CLI
python examples/run.py
```
### What Can You Build?
- **Custom AI Agents**: Register your Python functions as AI tools
- **MCP Integration**: Connect to any Model Context Protocol server
- **Smart Memory**: Vector databases for long-term AI memory
- **Background Agents**: Self-flying autonomous task execution
- **Production Monitoring**: Opik tracing for performance optimization
➡️ **Next**: Check out [Examples](#-what-can-you-build-see-real-examples) or jump to [Configuration Guide](#️-configuration-guide)
---
## 🌟 **Complete AI Platform - Two Powerful Systems:**
### 1. 🤖 **OmniAgent System** *(Revolutionary AI Agent Builder)*
Born from MCPOmni Connect's foundation - create intelligent, autonomous agents with:
- **🛠️ Local Tools System** - Register your Python functions as AI tools
- **🚁 Self-Flying Background Agents** - Autonomous task execution
- **🧠 Multi-Tier Memory** - Vector databases, Redis, PostgreSQL, MySQL, SQLite
- **📡 Real-Time Events** - Live monitoring and streaming
- **🔧 MCP + Local Tool Orchestration** - Seamlessly combine both tool types
### 2. 🔌 **Universal MCP Client** *(World-Class CLI)*
Advanced command-line interface for connecting to any Model Context Protocol server with:
- **🌐 Multi-Protocol Support** - stdio, SSE, HTTP, Docker, NPX transports
- **🔐 Authentication** - OAuth 2.0, Bearer tokens, custom headers
- **🧠 Advanced Memory** - Redis, Database, Vector storage with intelligent retrieval
- **📡 Event Streaming** - Real-time monitoring and debugging
- **🤖 Agentic Modes** - ReAct, Orchestrator, and Interactive chat modes
**🎯 Perfect for:** Developers who want the complete AI ecosystem - build custom agents AND have world-class MCP connectivity.
## 🚀 NEW: OmniAgent - Build Your Own AI Agents!
**🌟 Introducing OmniAgent** - A revolutionary AI agent system that brings plug-and-play intelligence to your applications!
### ✅ OmniAgent Revolutionary Capabilities:
- **🧠 Multi-tier memory management** with vector search and semantic retrieval
- **🛠️ XML-based reasoning** with strict tool formatting for reliable execution
- **🔧 Advanced tool orchestration** - Seamlessly combine MCP server tools + local tools
- **🚁 Self-flying background agents** with autonomous task execution
- **📡 Real-time event streaming** for monitoring and debugging
- **🏗️ Production-ready infrastructure** with error handling and retry logic
- **⚡ Plug-and-play intelligence** - No complex setup required!
### 🔥 **LOCAL TOOLS SYSTEM** *(MAJOR FEATURE!)*
- **🎯 Easy Tool Registration**: `@tool_registry.register_tool("tool_name")`
- **🔌 Custom Tool Creation**: Register your own Python functions as AI tools
- **🔄 Runtime Tool Management**: Add/remove tools dynamically
- **⚙️ Type-Safe Interface**: Automatic parameter validation and documentation
- **📖 Rich Examples**: Study `run_omni_agent.py` for 12+ EXAMPLE tool registration patterns
---
## 💡 **What Can You Build? (See Real Examples)**
### 🔌 **MCP Client Usage** *(Connect to MCP Servers)*
```bash
# Basic MCP client usage - Simple connection patterns
python examples/basic.py
# Advanced MCP CLI - Full-featured client interface
python examples/run.py
```
### 🤖 **OmniAgent System** *(Build Custom AI Agents)*
```bash
# Complete OmniAgent demo - All features showcase
python examples/omni_agent_example.py
# Advanced OmniAgent patterns - Study 12+ tool examples
python examples/run_omni_agent.py
```
### 🚁 **Background Agent Automation** *(Self-Flying Agents)*
```bash
# Self-flying background agents - Autonomous task execution
python examples/background_agent_example.py
```
### 🌐 **Web Applications** *(User Interfaces)*
```bash
# FastAPI implementation - Clean API endpoints
python examples/fast_api_iml.py
# Web server with UI - Interactive interface for OmniAgent
python examples/web_server.py
# Open http://localhost:8000 for web interface
```
### 🔧 **LLM Provider Configuration** *(Multiple Providers)*
All LLM provider examples consolidated in:
```bash
# See examples/llm_usage-config.json for:
# - Anthropic Claude models
# - Groq ultra-fast inference
# - Azure OpenAI enterprise
# - Ollama local models
# - OpenRouter 200+ models
# - And more providers...
```
---
## ✨ Key Features
> **🚀 Want to start building right away?** Jump to [Quick Start](#-quick-start-2-minutes) | [Examples](#-what-can-you-build-see-real-examples) | [Configuration](#️-configuration-guide)
### 🤖 Intelligent Agent System
- **ReAct Agent Mode**
- Autonomous task execution with reasoning and action cycles
- Independent decision-making without human intervention
- Advanced problem-solving through iterative reasoning
- Self-guided tool selection and execution
- Complex task decomposition and handling
- **Orchestrator Agent Mode**
- Strategic multi-step task planning and execution
- Intelligent coordination across multiple MCP servers
- Dynamic agent delegation and communication
- Parallel task execution when possible
- Sophisticated workflow management with real-time progress monitoring
- **Interactive Chat Mode**
- Human-in-the-loop task execution with approval workflows
- Step-by-step guidance and explanations
- Educational mode for understanding AI decision processes
### 🔌 Universal Connectivity
- **Multi-Protocol Support**
- Native support for stdio transport
- Server-Sent Events (SSE) for real-time communication
- Streamable HTTP for efficient data streaming
- Docker container integration
- NPX package execution
- Extensible transport layer for future protocols
- **Authentication Support**
- OAuth 2.0 authentication flow
- Bearer token authentication
- Custom header support
- Secure credential management
- **Agentic Operation Modes**
- Seamless switching between chat, autonomous, and orchestrator modes
- Context-aware mode selection based on task complexity
- Persistent state management across mode transitions
### 🧠 AI-Powered Intelligence
- **Unified LLM Integration with LiteLLM**
- Single unified interface for all AI providers
- Support for 100+ models across providers including:
- OpenAI (GPT-4, GPT-3.5, etc.)
- Anthropic (Claude 3.5 Sonnet, Claude 3 Haiku, etc.)
- Google (Gemini Pro, Gemini Flash, etc.)
- Groq (Llama, Mixtral, Gemma, etc.)
- DeepSeek (DeepSeek-V3, DeepSeek-Coder, etc.)
- Azure OpenAI
- OpenRouter (access to 200+ models)
- Ollama (local models)
- Simplified configuration and reduced complexity
- Dynamic system prompts based on available capabilities
- Intelligent context management
- Automatic tool selection and chaining
- Universal model support through custom ReAct Agent
- Handles models without native function calling
- Dynamic function execution based on user requests
- Intelligent tool orchestration
### 🔒 Security & Privacy
- **Explicit User Control**
- All tool executions require explicit user approval in chat mode
- Clear explanation of tool actions before execution
- Transparent disclosure of data access and usage
- **Data Protection**
- Strict data access controls
- Server-specific data isolation
- No unauthorized data exposure
- **Privacy-First Approach**
- Minimal data collection
- User data remains on specified servers
- No cross-server data sharing without consent
- **Secure Communication**
- Encrypted transport protocols
- Secure API key management
- Environment variable protection
### 💾 Advanced Memory Management *(UPDATED!)*
- **Multi-Backend Memory Storage**
- **In-Memory**: Fast development storage
- **Redis**: Persistent memory with real-time access
- **Database**: PostgreSQL, MySQL, SQLite support
- **File Storage**: Save/load conversation history
- Runtime switching: `/memory_store:redis`, `/memory_store:database:postgresql://user:pass@host/db`
- **Multi-Tier Memory Strategy**
- **Short-term Memory**: Sliding window or token budget strategies
- **Long-term Memory**: Vector database storage for semantic retrieval
- **Episodic Memory**: Context-aware conversation history
- Runtime configuration: `/memory_mode:sliding_window:5`, `/memory_mode:token_budget:3000`
- **Vector Database Integration *(NEW!)*
- **Multiple Provider Support**: ChromaDB (local/remote/cloud) + Qdrant (remote)
- **Smart Fallback**: Automatic failover to local storage if remote fails
- **Semantic Search**: Intelligent context retrieval across conversations
- **Long-term & Episodic Memory**: Enable with `ENABLE_VECTOR_DB=true`
- **⚠️ Startup Impact**: 30-60s initial load (sentence transformer), then fast
- **Real-Time Event Streaming *(NEW!)*
- **In-Memory Events**: Fast development event processing
- **Redis Streams**: Persistent event storage and streaming
- Runtime switching: `/event_store:redis_stream`, `/event_store:in_memory`
- **Advanced Tracing & Observability *(LATEST!)*
- **Opik Integration**: Production-grade tracing and monitoring
- **Real-time Performance Tracking**: Monitor LLM calls, tool executions, and agent performance
- **Detailed Call Traces**: See exactly where time is spent in your AI workflows
- **System Observability**: Understand bottlenecks and optimize performance
- **Open Source**: Built on Opik, the open-source observability platform
- **Easy Setup**: Just add your Opik credentials to start monitoring
- **Zero Code Changes**: Automatic tracing with `@track` decorators
- **Performance Insights**: Identify slow operations and optimization opportunities
### 💬 Prompt Management
- **Advanced Prompt Handling**
- Dynamic prompt discovery across servers
- Flexible argument parsing (JSON and key-value formats)
- Cross-server prompt coordination
- Intelligent prompt validation
- Context-aware prompt execution
- Real-time prompt responses
- Support for complex nested arguments
- Automatic type conversion and validation
- **Client-Side Sampling Support**
- Dynamic sampling configuration from client
- Flexible LLM response generation
- Customizable sampling parameters
- Real-time sampling adjustments
### 🛠️ Tool Orchestration
- **Dynamic Tool Discovery & Management**
- Automatic tool capability detection
- Cross-server tool coordination
- Intelligent tool selection based on context
- Real-time tool availability updates
### 📦 Resource Management
- **Universal Resource Access**
- Cross-server resource discovery
- Unified resource addressing
- Automatic resource type detection
- Smart content summarization
### 🔄 Server Management
- **Advanced Server Handling**
- Multiple simultaneous server connections
- Automatic server health monitoring
- Graceful connection management
- Dynamic capability updates
- Flexible authentication methods
- Runtime server configuration updates
## 🏗️ Architecture
> **📚 Prefer hands-on learning?** Skip to [Examples](#-what-can-you-build-see-real-examples) or [Configuration](#️-configuration-guide)
### Core Components
```
MCPOmni Connect Platform
├── 🤖 OmniAgent System (Revolutionary Agent Builder)
│ ├── Local Tools Registry
│ ├── Background Agent Manager
│ ├── Custom Agent Creation
│ └── Agent Orchestration Engine
├── 🔌 Universal MCP Client (World-Class CLI)
│ ├── Transport Layer (stdio, SSE, HTTP, Docker, NPX)
│ ├── Multi-Server Orchestration
│ ├── Authentication & Security
│ └── Connection Lifecycle Management
├── 🧠 Shared Memory System (Both Systems)
│ ├── Multi-Backend Storage (Redis, DB, In-Memory)
│ ├── Vector Database Integration (ChromaDB, Qdrant)
│ ├── Memory Strategies (Sliding Window, Token Budget)
│ └── Session Management
├── 📡 Event System (Both Systems)
│ ├── In-Memory Event Processing
│ ├── Redis Streams for Persistence
│ └── Real-Time Event Monitoring
├── 🛠️ Tool Management (Both Systems)
│ ├── Dynamic Tool Discovery
│ ├── Cross-Server Tool Routing
│ ├── Local Python Tool Registration
│ └── Tool Execution Engine
└── 🤖 AI Integration (Both Systems)
├── LiteLLM (100+ Models)
├── Context Management
├── ReAct Agent Processing
└── Response Generation
```
## 🚀 Getting Started
### ✅ **Minimal Setup (Just Python + API Key)**
**Required:**
- Python 3.10+
- LLM API key (OpenAI, Anthropic, Groq, etc.)
**Optional (for advanced features):**
- Redis (persistent memory)
- Vector DB (Support both Qdrant and ChromaDB)
- Database (PostgreSQL/MySQL/SQLite)
- ⚠️ **Vector DB startup**: 30-60s initial load time
### 📦 **Installation**
```bash
# Option 1: UV (recommended - faster)
uv add mcpomni-connect
# Option 2: Pip (standard)
pip install mcpomni-connect
```
### ⚡ **Quick Configuration**
**Minimal setup** (get started immediately):
```bash
# Just set your API key - that's it!
echo "LLM_API_KEY=your_api_key_here" > .env
```
**Advanced setup** (optional features):
> **📖 Need more options?** See the complete [Configuration Guide](#configuration-guide) below for all environment variables, vector database setup, memory configuration, and advanced features.
### 🎯 **Choose Your Path**
**Path A: Build Custom Agents (OmniAgent)**
```bash
python examples/omni_agent_example.py
```
**Path B: Advanced MCP Client (CLI)**
```bash
python examples/run.py
```
**Path C: Web Interface**
```bash
python examples/web_server.py
# Open http://localhost:8000
```
## ⚙️ Configuration Guide
> **⚡ Quick Setup**: Only need `LLM_API_KEY` to get started! | **🔍 Detailed Setup**: [Vector DB](#-vector-database--smart-memory-setup-complete-guide) | [Tracing](#-opik-tracing--observability-setup-latest-feature)
### Environment Variables
Create a `.env` file with your configuration. **Only the LLM API key is required** - everything else is optional for advanced features.
#### **🔥 REQUIRED (Start Here)**
```bash
# ===============================================
# REQUIRED: AI Model API Key (Choose one provider)
# ===============================================
LLM_API_KEY=your_openai_api_key_here
# OR for other providers:
# LLM_API_KEY=your_anthropic_api_key_here
# LLM_API_KEY=your_groq_api_key_here
# LLM_API_KEY=your_azure_openai_api_key_here
# See examples/llm_usage-config.json for all provider configs
```
#### **⚡ OPTIONAL: Advanced Features**
```bash
# ===============================================
# Tracing & Observability (OPTIONAL) - NEW!
# ===============================================
# For advanced monitoring and performance optimization
# 🔗 Sign up: https://www.comet.com/signup?from=llm
OPIK_API_KEY=your_opik_api_key_here
OPIK_WORKSPACE=your_opik_workspace_name
# ===============================================
# Vector Database (OPTIONAL) - Smart Memory
# ===============================================
# ⚠️ Warning: 30-60s startup time for sentence transformer
# ⚠️ IMPORTANT: You MUST choose a provider - no local fallback
ENABLE_VECTOR_DB=true # Default: false
# Choose ONE provider (required if ENABLE_VECTOR_DB=true):
# Option 1: Qdrant Remote (RECOMMENDED)
OMNI_MEMORY_PROVIDER=qdrant-remote
QDRANT_HOST=localhost
QDRANT_PORT=6333
# Option 2: ChromaDB Remote
# OMNI_MEMORY_PROVIDER=chroma-remote
# CHROMA_HOST=localhost
# CHROMA_PORT=8000
# Option 3: ChromaDB Cloud
# OMNI_MEMORY_PROVIDER=chroma-cloud
# CHROMA_TENANT=your_tenant
# CHROMA_DATABASE=your_database
# CHROMA_API_KEY=your_api_key
# ===============================================
# Persistent Memory Storage (OPTIONAL)
# ===============================================
# These have sensible defaults - only set if you need custom configuration
# Redis - for memory_store_type="redis" (defaults to: redis://localhost:6379/0)
# REDIS_URL=redis://your-remote-redis:6379/0
# REDIS_URL=redis://:password@localhost:6379/0 # With password
# Database - for memory_store_type="database" (defaults to: sqlite:///mcpomni_memory.db)
# DATABASE_URL=postgresql://user:password@localhost:5432/mcpomni
# DATABASE_URL=mysql://user:password@localhost:3306/mcpomni
```
> **💡 Quick Start**: Just set `LLM_API_KEY` and you're ready to go! Add other variables only when you need advanced features.
### **Server Configuration (`servers_config.json`)**
For MCP server connections and agent settings:
### 🚦 Transport Types & Authentication
MCPOmni Connect supports multiple ways to connect to MCP servers:
#### 1. **stdio** - Direct Process Communication
**Use when**: Connecting to local MCP servers that run as separate processes
```json
{
"server-name": {
"transport_type": "stdio",
"command": "uvx",
"args": ["mcp-server-package"]
}
}
```
- **No authentication needed**
- **No OAuth server started**
- Most common for local development
#### 2. **sse** - Server-Sent Events
**Use when**: Connecting to HTTP-based MCP servers using Server-Sent Events
```json
{
"server-name": {
"transport_type": "sse",
"url": "http://your-server.com:4010/sse",
"headers": {
"Authorization": "Bearer your-token"
},
"timeout": 60,
"sse_read_timeout": 120
}
}
```
- **Uses Bearer token or custom headers**
- **No OAuth server started**
#### 3. **streamable_http** - HTTP with Optional OAuth
**Use when**: Connecting to HTTP-based MCP servers with or without OAuth
**Without OAuth (Bearer Token):**
```json
{
"server-name": {
"transport_type": "streamable_http",
"url": "http://your-server.com:4010/mcp",
"headers": {
"Authorization": "Bearer your-token"
},
"timeout": 60
}
}
```
- **Uses Bearer token or custom headers**
- **No OAuth server started**
**With OAuth:**
```json
{
"server-name": {
"transport_type": "streamable_http",
"auth": {
"method": "oauth"
},
"url": "http://your-server.com:4010/mcp"
}
}
```
- **OAuth callback server automatically starts on `http://localhost:3000`**
- **This is hardcoded and cannot be changed**
- **Required for OAuth flow to work properly**
### 🔐 OAuth Server Behavior
**Important**: When using OAuth authentication, MCPOmni Connect automatically starts an OAuth callback server.
#### What You'll See:
```
🖥️ Started callback server on http://localhost:3000
```
#### Key Points:
- **This is normal behavior** - not an error
- **The address `http://localhost:3000` is hardcoded** and cannot be changed
- **The server only starts when** you have `"auth": {"method": "oauth"}` in your config
- **The server stops** when the application shuts down
- **Only used for OAuth token handling** - no other purpose
#### When OAuth is NOT Used:
- Remove the entire `"auth"` section from your server configuration
- Use `"headers"` with `"Authorization": "Bearer token"` instead
- No OAuth server will start
### 🛠️ Troubleshooting Common Issues
#### "Failed to connect to server: Session terminated"
**Possible Causes & Solutions:**
1. **Wrong Transport Type**
```
Problem: Your server expects 'stdio' but you configured 'streamable_http'
Solution: Check your server's documentation for the correct transport type
```
2. **OAuth Configuration Mismatch**
```
Problem: Your server doesn't support OAuth but you have "auth": {"method": "oauth"}
Solution: Remove the "auth" section entirely and use headers instead:
"headers": {
"Authorization": "Bearer your-token"
}
```
3. **Server Not Running**
```
Problem: The MCP server at the specified URL is not running
Solution: Start your MCP server first, then connect with MCPOmni Connect
```
4. **Wrong URL or Port**
```
Problem: URL in config doesn't match where your server is running
Solution: Verify the server's actual address and port
```
#### "Started callback server on http://localhost:3000" - Is This Normal?
**Yes, this is completely normal** when:
- You have `"auth": {"method": "oauth"}` in any server configuration
- The OAuth server handles authentication tokens automatically
- You cannot and should not try to change this address
**If you don't want the OAuth server:**
- Remove `"auth": {"method": "oauth"}` from all server configurations
- Use alternative authentication methods like Bearer tokens
### 📋 Configuration Examples by Use Case
#### Local Development (stdio)
```json
{
"mcpServers": {
"local-tools": {
"transport_type": "stdio",
"command": "uvx",
"args": ["mcp-server-tools"]
}
}
}
```
#### Remote Server with Token
```json
{
"mcpServers": {
"remote-api": {
"transport_type": "streamable_http",
"url": "http://api.example.com:8080/mcp",
"headers": {
"Authorization": "Bearer abc123token"
}
}
}
}
```
#### Remote Server with OAuth
```json
{
"mcpServers": {
"oauth-server": {
"transport_type": "streamable_http",
"auth": {
"method": "oauth"
},
"url": "http://oauth-server.com:8080/mcp"
}
}
}
```
### Start CLI
Start the CLI - ensure your API key is exported or create `.env` file:
```bash
# Basic MCP client
python examples/basic.py
# Or advanced MCP CLI
python examples/run.py
```
## 🧪 Testing
### Running Tests
```bash
# Run all tests with verbose output
pytest tests/ -v
# Run specific test file
pytest tests/test_specific_file.py -v
# Run tests with coverage report
pytest tests/ --cov=src --cov-report=term-missing
```
### Test Structure
```
tests/
├── unit/ # Unit tests for individual components
```
### Development Quick Start
1. **Installation**
```bash
# Clone the repository
git clone https://github.com/Abiorh001/mcp_omni_connect.git
cd mcp_omni_connect
# Create and activate virtual environment
uv venv
source .venv/bin/activate
# Install dependencies
uv sync
```
2. **Configuration**
```bash
# Set up environment variables
echo "LLM_API_KEY=your_api_key_here" > .env
# Configure your servers in servers_config.json
```
3. **Start Client**
```bash
uv run examples/run.py
```
Or:
```bash
python examples/run.py
```
## 🎯 **Getting Started - Choose Your Path**
### When to Use What?
| **Use Case** | **Choose** | **Best For** |
|-------------|------------|--------------|
| Build custom AI apps | **OmniAgent** | Web apps, automation, custom workflows |
| Connect to MCP servers | **MCP CLI** | Daily workflow, server management, debugging |
| Learn & experiment | **Examples** | Understanding patterns, proof of concepts |
| Production deployment | **Both** | Full-featured AI applications |
### **Path 1: 🤖 Build Custom AI Agents (OmniAgent)**
Perfect for: Custom applications, automation, web apps
```bash
# Study the examples to learn patterns:
python examples/basic.py # Simple MCP client
python examples/omni_agent_example.py # Complete OmniAgent demo
python examples/background_agent_example.py # Self-flying agents
python examples/web_server.py # Web interface
# Then build your own using the patterns!
```
### **Path 2: 🔌 Advanced MCP Client (CLI)**
Perfect for: Daily workflow, server management, debugging
```bash
# Basic MCP client - Simple connection patterns
python examples/basic.py
# World-class MCP client with advanced features
python examples/run.py
# Features: Connect to MCP servers, agentic modes, advanced memory
```
### **Path 3: 🧪 Study Tool Patterns (Learning)**
Perfect for: Learning, understanding patterns, experimentation
```bash
# Comprehensive testing interface - Study 12+ EXAMPLE tools
python examples/run_omni_agent.py --mode cli
# Study this file to see tool registration patterns and CLI features
# Contains many examples of how to create custom tools
```
**💡 Pro Tip:** Most developers use **both paths** - the MCP CLI for daily workflow and OmniAgent for building custom solutions!
---
## 🔥 Local Tools System - Create Custom AI Tools!
One of OmniAgent's most powerful features is the ability to **register your own Python functions as AI tools**. The agent can then intelligently use these tools to complete tasks.
### 🎯 Quick Tool Registration Example
```python
from mcpomni_connect.agents.tools.local_tools_registry import ToolRegistry
# Create tool registry
tool_registry = ToolRegistry()
# Register your custom tools with simple decorator
@tool_registry.register_tool("calculate_area")
def calculate_area(length: float, width: float) -> str:
"""Calculate the area of a rectangle."""
area = length * width
return f"Area of rectangle ({length} x {width}): {area} square units"
@tool_registry.register_tool("analyze_text")
def analyze_text(text: str) -> str:
"""Analyze text and return word count and character count."""
words = len(text.split())
chars = len(text)
return f"Analysis: {words} words, {chars} characters"
@tool_registry.register_tool("system_status")
def get_system_status() -> str:
"""Get current system status information."""
import platform
import time
return f"System: {platform.system()}, Time: {time.strftime('%Y-%m-%d %H:%M:%S')}"
# Use tools with OmniAgent
agent = OmniAgent(
name="my_agent",
local_tools=tool_registry, # Your custom tools!
# ... other config
)
# Now the AI can use your tools!
result = await agent.run("Calculate the area of a 10x5 rectangle and tell me the current system time")
```
### 📖 Tool Registration Patterns (Create Your Own!)
**No built-in tools** - You create exactly what you need! Study these EXAMPLE patterns from `run_omni_agent.py`:
**Mathematical Tools Examples:**
```python
@tool_registry.register_tool("calculate_area")
def calculate_area(length: float, width: float) -> str:
area = length * width
return f"Area: {area} square units"
@tool_registry.register_tool("analyze_numbers")
def analyze_numbers(numbers: str) -> str:
num_list = [float(x.strip()) for x in numbers.split(",")]
return f"Count: {len(num_list)}, Average: {sum(num_list)/len(num_list):.2f}"
```
**System Tools Examples:**
```python
@tool_registry.register_tool("system_info")
def get_system_info() -> str:
import platform
return f"OS: {platform.system()}, Python: {platform.python_version()}"
```
**File Tools Examples:**
```python
@tool_registry.register_tool("list_files")
def list_directory(path: str = ".") -> str:
import os
files = os.listdir(path)
return f"Found {len(files)} items in {path}"
```
### 🎨 Tool Registration Patterns
**1. Simple Function Tools:**
```python
@tool_registry.register_tool("weather_check")
def check_weather(city: str) -> str:
"""Get weather information for a city."""
# Your weather API logic here
return f"Weather in {city}: Sunny, 25°C"
```
**2. Complex Analysis Tools:**
```python
@tool_registry.register_tool("data_analysis")
def analyze_data(data: str, analysis_type: str = "summary") -> str:
"""Analyze data with different analysis types."""
import json
try:
data_obj = json.loads(data)
if analysis_type == "summary":
return f"Data contains {len(data_obj)} items"
elif analysis_type == "detailed":
# Complex analysis logic
return "Detailed analysis results..."
except:
return "Invalid data format"
```
**3. File Processing Tools:**
```python
@tool_registry.register_tool("process_file")
def process_file(file_path: str, operation: str) -> str:
"""Process files with different operations."""
try:
if operation == "read":
with open(file_path, 'r') as f:
content = f.read()
return f"File content (first 100 chars): {content[:100]}..."
elif operation == "count_lines":
with open(file_path, 'r') as f:
lines = len(f.readlines())
return f"File has {lines} lines"
except Exception as e:
return f"Error processing file: {e}"
```
---
### 🧠 **Vector Database & Smart Memory Setup** *(COMPLETE GUIDE)*
MCPOmni Connect provides advanced memory capabilities through vector databases for intelligent, semantic search and long-term memory.
#### **⚡ Quick Start (Choose Your Provider)**
```bash
# Enable vector memory - you MUST choose a provider
ENABLE_VECTOR_DB=true
# Option 1: Qdrant (recommended)
OMNI_MEMORY_PROVIDER=qdrant-remote
QDRANT_HOST=localhost
QDRANT_PORT=6333
# Option 2: ChromaDB Remote
OMNI_MEMORY_PROVIDER=chroma-remote
CHROMA_HOST=localhost
CHROMA_PORT=8000
```
#### **⚠️ Important: Startup Time Impact**
- **Vector DB disabled**: ~1-2 seconds startup
- **Vector DB enabled**: ~30-60 seconds startup (sentence transformer model loading)
- **Memory usage**: ~2-4GB (includes sentence transformer model)
- **Recommendation**: Enable during development setup, then it's fast for all subsequent usage
#### **🔧 Vector Database Providers**
**1. Qdrant Remote (Recommended Default)**
```bash
# Install and run Qdrant
docker run -p 6333:6333 qdrant/qdrant
# Configure
ENABLE_VECTOR_DB=true
OMNI_MEMORY_PROVIDER=qdrant-remote
QDRANT_HOST=localhost
QDRANT_PORT=6333
```
**2. ChromaDB Remote**
```bash
# Install and run ChromaDB server
docker run -p 8000:8000 chromadb/chroma
# Configure
ENABLE_VECTOR_DB=true
OMNI_MEMORY_PROVIDER=chroma-remote
CHROMA_HOST=localhost
CHROMA_PORT=8000
```
**3. ChromaDB Cloud**
```bash
ENABLE_VECTOR_DB=true
OMNI_MEMORY_PROVIDER=chroma-cloud
CHROMA_TENANT=your_tenant
CHROMA_DATABASE=your_database
CHROMA_API_KEY=your_api_key
```
#### **⚠️ Important: No Local Fallback**
- **Local ChromaDB support has been removed** for performance reasons
- **You must configure a vector database provider** - no automatic fallback
- **If no provider is configured or fails**: Vector DB will be disabled
- **This ensures fast startup** when vector DB is not needed
#### **✨ What You Get**
- **Long-term Memory**: Persistent storage across sessions
- **Episodic Memory**: Context-aware conversation history
- **Semantic Search**: Find relevant information by meaning, not exact text
- **Multi-session Context**: Remember information across different conversations
- **Automatic Summarization**: Intelligent memory compression for efficiency
### 📊 **Opik Tracing & Observability Setup** *(LATEST FEATURE!)*
**Monitor and optimize your AI agents with production-grade observability:**
#### **🚀 Quick Setup**
1. **Sign up for Opik** (Free & Open Source):
- Visit: **[https://www.comet.com/signup?from=llm](https://www.comet.com/signup?from=llm)**
- Create your account and get your API key and workspace name
2. **Add to your `.env` file** (see [Environment Variables](#environment-variables) above):
```bash
OPIK_API_KEY=your_opik_api_key_here
OPIK_WORKSPACE=your_opik_workspace_name
```
#### **✨ What You Get Automatically**
Once configured, MCPOmni Connect automatically tracks:
- **🔥 LLM Call Performance**: Execution time, token usage, response quality
- **🛠️ Tool Execution Traces**: Which tools were used and how long they took
- **🧠 Memory Operations**: Vector DB queries, memory retrieval performance
- **🤖 Agent Workflow**: Complete trace of multi-step agent reasoning
- **📊 System Bottlenecks**: Identify exactly where time is spent
#### **📈 Benefits**
- **Performance Optimization**: See which LLM calls or tools are slow
- **Cost Monitoring**: Track token usage and API costs
- **Debugging**: Understand agent decision-making processes
- **Production Monitoring**: Real-time observability for deployed agents
- **Zero Code Changes**: Works automatically with existing agents
#### **🔍 Example: What You'll See**
```
Agent Execution Trace:
├── agent_execution: 4.6s
│ ├── tools_registry_retrieval: 0.02s ✅
│ ├── memory_retrieval_step: 0.08s ✅
│ ├── llm_call: 4.5s ⚠️ (bottleneck identified!)
│ ├── response_parsing: 0.01s ✅
│ └── action_execution: 0.03s ✅
```
**💡 Pro Tip**: Opik is completely optional. If you don't set the credentials, MCPOmni Connect works normally without tracing.
### 🖥️ Updated CLI Commands *(NEW!)*
**Memory Store Management:**
```bash
# Switch between memory backends
/memory_store:in_memory # Fast in-memory storage (default)
/memory_store:redis # Redis persistent storage
/memory_store:database # SQLite database storage
/memory_store:database:postgresql://user:pass@host/db # PostgreSQL
/memory_store:database:mysql://user:pass@host/db # MySQL
# Memory strategy configuration
/memory_mode:sliding_window:10 # Keep last 10 messages
/memory_mode:token_budget:5000 # Keep under 5000 tokens
```
**Event Store Management:**
```bash
# Switch between event backends
/event_store:in_memory # Fast in-memory events (default)
/event_store:redis_stream # Redis Streams for persistence
```
**Enhanced Commands:**
```bash
# Memory operations
/history # Show conversation history
/clear_history # Clear conversation history
/save_history <file> # Save history to file
/load_history <file> # Load history from file
# Server management
/add_servers:<config.json> # Add servers from config
/remove_server:<server_name> # Remove specific server
/refresh # Refresh server capabilities
# Debugging and monitoring
/debug # Toggle debug mode
/api_stats # Show API usage statistics
```
---
### 🚀 MCPOmni Connect CLI - World-Class MCP Client
The MCPOmni Connect CLI is the most advanced MCP client available, providing professional-grade MCP functionality with enhanced memory, event management, and agentic modes:
```bash
# Launch the advanced MCP CLI
python examples/run.py
# Core MCP client commands:
/tools # List all available tools
/prompts # List all available prompts
/resources # List all available resources
/prompt:<name> # Execute a specific prompt
/resource:<uri> # Read a specific resource
/subscribe:<uri> # Subscribe to resource updates
/query <your_question> # Ask questions using tools
# Advanced platform features:
/memory_store:redis # Switch to Redis memory
/event_store:redis_stream # Switch to Redis events
/add_servers:<config.json> # Add MCP servers dynamically
/remove_server:<name> # Remove MCP server
/mode:auto # Switch to autonomous agentic mode
/mode:orchestrator # Switch to multi-server orchestration
```
## 🛠️ Developer Integration
MCPOmni Connect is not just a CLI tool—it's also a powerful Python library. **OmniAgent consolidates everything** - you no longer need to manually manage MCP clients, configurations, and agents separately!
### Build Apps with OmniAgent *(Recommended)*
**OmniAgent automatically includes MCP client functionality** - just specify your MCP servers and you're ready to go:
```python
from mcpomni_connect.omni_agent import OmniAgent
from mcpomni_connect.memory_store.memory_router import MemoryRouter
from mcpomni_connect.events.event_router import EventRouter
from mcpomni_connect.agents.tools.local_tools_registry import ToolRegistry
# Create tool registry for custom tools
tool_registry = ToolRegistry()
@tool_registry.register_tool("analyze_data")
def analyze_data(data: str) -> str:
"""Analyze data and return insights."""
return f"Analysis complete: {len(data)} characters processed"
# OmniAgent automatically handles MCP connections + your tools
agent = OmniAgent(
name="my_app_agent",
system_instruction="You are a helpful assistant with access to MCP servers and custom tools.",
model_config={
"provider": "openai",
"model": "gpt-4o",
"temperature": 0.7
},
# Your custom local tools
local_tools=tool_registry,
# MCP servers - automatically connected!
mcp_tools=[
{
"name": "filesystem",
"transport_type": "stdio",
"command": "npx",
"args": ["-y", "@modelcontextprotocol/server-filesystem", "/home"]
},
{
"name": "github",
"transport_type": "streamable_http",
"url": "http://localhost:8080/mcp",
"headers": {"Authorization": "Bearer your-token"}
}
],
memory_store=MemoryRouter(memory_store_type="redis"),
event_router=EventRouter(event_store_type="in_memory")
)
# Use in your app - gets both MCP tools AND your custom tools!
result = await agent.run("List files in the current directory and analyze the filenames")
```
### Legacy Manual Approach *(Not Recommended)*
If you need the old manual approach for some reason:
### FastAPI Integration with OmniAgent
OmniAgent makes building APIs incredibly simple. See [`examples/web_server.py`](examples/web_server.py) for a complete FastAPI example:
```python
from fastapi import FastAPI
from mcpomni_connect.omni_agent import OmniAgent
app = FastAPI()
agent = OmniAgent(...) # Your agent setup from above
@app.post("/chat")
async def chat(message: str, session_id: str = None):
result = await agent.run(message, session_id)
return {"response": result['response'], "session_id": result['session_id']}
@app.get("/tools")
async def get_tools():
# Returns both MCP tools AND your custom tools automatically
return agent.get_available_tools()
```
**Key Benefits:**
- **One OmniAgent = MCP + Custom Tools + Memory + Events**
- **Automatic tool discovery** from all connected MCP servers
- **Built-in session management** and conversation history
- **Real-time event streaming** for monitoring
- **Easy integration** with any Python web framework
---
### Server Configuration Examples
> **💡 Quick Reference**: See `examples/llm_usage-config.json` for all LLM provider configurations (Anthropic, Groq, Azure, Ollama, OpenRouter, etc.)
#### Basic OpenAI Configuration
```json
{
"AgentConfig": {
"tool_call_timeout": 30,
"max_steps": 15,
"request_limit": 1000,
"total_tokens_limit": 100000
},
"LLM": {
"provider": "openai",
"model": "gpt-4",
"temperature": 0.5,
"max_tokens": 5000,
"max_context_length": 30000,
"top_p": 0
},
"mcpServers": {
"ev_assistant": {
"transport_type": "streamable_http",
"auth": {
"method": "oauth"
},
"url": "http://localhost:8000/mcp"
},
"sse-server": {
"transport_type": "sse",
"url": "http://localhost:3000/sse",
"headers": {
"Authorization": "Bearer token"
},
"timeout": 60,
"sse_read_timeout": 120
},
"streamable_http-server": {
"transport_type": "streamable_http",
"url": "http://localhost:3000/mcp",
"headers": {
"Authorization": "Bearer token"
},
"timeout": 60,
"sse_read_timeout": 120
}
}
}
```
#### Anthropic Claude Configuration
```json
{
"LLM": {
"provider": "anthropic",
"model": "claude-3-5-sonnet-20241022",
"temperature": 0.7,
"max_tokens": 4000,
"max_context_length": 200000,
"top_p": 0.95
}
}
```
#### Groq Configuration
```json
{
"LLM": {
"provider": "groq",
"model": "llama-3.1-8b-instant",
"temperature": 0.5,
"max_tokens": 2000,
"max_context_length": 8000,
"top_p": 0.9
}
}
```
#### Azure OpenAI Configuration
```json
{
"LLM": {
"provider": "azureopenai",
"model": "gpt-4",
"temperature": 0.7,
"max_tokens": 2000,
"max_context_length": 100000,
"top_p": 0.95,
"azure_endpoint": "https://your-resource.openai.azure.com",
"azure_api_version": "2024-02-01",
"azure_deployment": "your-deployment-name"
}
}
```
#### Ollama Local Model Configuration
```json
{
"LLM": {
"provider": "ollama",
"model": "llama3.1:8b",
"temperature": 0.5,
"max_tokens": 5000,
"max_context_length": 100000,
"top_p": 0.7,
"ollama_host": "http://localhost:11434"
}
}
```
#### OpenRouter Configuration
```json
{
"LLM": {
"provider": "openrouter",
"model": "anthropic/claude-3.5-sonnet",
"temperature": 0.7,
"max_tokens": 4000,
"max_context_length": 200000,
"top_p": 0.95
}
}
```
### 🔐 Authentication Methods
MCPOmni Connect supports multiple authentication methods for secure server connections:
#### OAuth 2.0 Authentication
```json
{
"server_name": {
"transport_type": "streamable_http",
"auth": {
"method": "oauth"
},
"url": "http://your-server/mcp"
}
}
```
#### Bearer Token Authentication
```json
{
"server_name": {
"transport_type": "streamable_http",
"headers": {
"Authorization": "Bearer your-token-here"
},
"url": "http://your-server/mcp"
}
}
```
#### Custom Headers
```json
{
"server_name": {
"transport_type": "streamable_http",
"headers": {
"X-Custom-Header": "value",
"Authorization": "Custom-Auth-Scheme token"
},
"url": "http://your-server/mcp"
}
}
```
## 🔄 Dynamic Server Configuration
MCPOmni Connect supports dynamic server configuration through commands:
#### Add New Servers
```bash
# Add one or more servers from a configuration file
/add_servers:path/to/config.json
```
The configuration file can include multiple servers with different authentication methods:
```json
{
"new-server": {
"transport_type": "streamable_http",
"auth": {
"method": "oauth"
},
"url": "http://localhost:8000/mcp"
},
"another-server": {
"transport_type": "sse",
"headers": {
"Authorization": "Bearer token"
},
"url": "http://localhost:3000/sse"
}
}
```
#### Remove Servers
```bash
# Remove a server by its name
/remove_server:server_name
```
## 🎯 Usage
### Interactive Commands
- `/tools` - List all available tools across servers
- `/prompts` - View available prompts
- `/prompt:<name>/<args>` - Execute a prompt with arguments
- `/resources` - List available resources
- `/resource:<uri>` - Access and analyze a resource
- `/debug` - Toggle debug mode
- `/refresh` - Update server capabilities
- `/memory` - Toggle Redis memory persistence (on/off)
- `/mode:auto` - Switch to autonomous agentic mode
- `/mode:chat` - Switch back to interactive chat mode
- `/add_servers:<config.json>` - Add one or more servers from a configuration file
- `/remove_server:<server_name>` - Remove a server by its name
### Memory and Chat History
```bash
# Enable Redis memory persistence
/memory
# Check memory status
Memory persistence is now ENABLED using Redis
# Disable memory persistence
/memory
# Check memory status
Memory persistence is now DISABLED
```
### Operation Modes
```bash
# Switch to autonomous mode
/mode:auto
# System confirms mode change
Now operating in AUTONOMOUS mode. I will execute tasks independently.
# Switch back to chat mode
/mode:chat
# System confirms mode change
Now operating in CHAT mode. I will ask for approval before executing tasks.
```
### Mode Differences
- **Chat Mode (Default)**
- Requires explicit approval for tool execution
- Interactive conversation style
- Step-by-step task execution
- Detailed explanations of actions
- **Autonomous Mode**
- Independent task execution
- Self-guided decision making
- Automatic tool selection and chaining
- Progress updates and final results
- Complex task decomposition
- Error handling and recovery
- **Orchestrator Mode**
- Advanced planning for complex multi-step tasks
- Strategic delegation across multiple MCP servers
- Intelligent agent coordination and communication
- Parallel task execution when possible
- Dynamic resource allocation
- Sophisticated workflow management
- Real-time progress monitoring across agents
- Adaptive task prioritization
### Prompt Management
```bash
# List all available prompts
/prompts
# Basic prompt usage
/prompt:weather/location=tokyo
# Prompt with multiple arguments depends on the server prompt arguments requirements
/prompt:travel-planner/from=london/to=paris/date=2024-03-25
# JSON format for complex arguments
/prompt:analyze-data/{
"dataset": "sales_2024",
"metrics": ["revenue", "growth"],
"filters": {
"region": "europe",
"period": "q1"
}
}
# Nested argument structures
/prompt:market-research/target=smartphones/criteria={
"price_range": {"min": 500, "max": 1000},
"features": ["5G", "wireless-charging"],
"markets": ["US", "EU", "Asia"]
}
```
### Advanced Prompt Features
- **Argument Validation**: Automatic type checking and validation
- **Default Values**: Smart handling of optional arguments
- **Context Awareness**: Prompts can access previous conversation context
- **Cross-Server Execution**: Seamless execution across multiple MCP servers
- **Error Handling**: Graceful handling of invalid arguments with helpful messages
- **Dynamic Help**: Detailed usage information for each prompt
### AI-Powered Interactions
The client intelligently:
- Chains multiple tools together
- Provides context-aware responses
- Automatically selects appropriate tools
- Handles errors gracefully
- Maintains conversation context
### Model Support with LiteLLM
- **Unified Model Access**
- Single interface for 100+ models across all major providers
- Automatic provider detection and routing
- Consistent API regardless of underlying provider
- Native function calling for compatible models
- ReAct Agent fallback for models without function calling
- **Supported Providers**
- **OpenAI**: GPT-4, GPT-3.5, and all model variants
- **Anthropic**: Claude 3.5 Sonnet, Claude 3 Haiku, Claude 3 Opus
- **Google**: Gemini Pro, Gemini Flash, PaLM models
- **Groq**: Ultra-fast inference for Llama, Mixtral, Gemma
- **DeepSeek**: DeepSeek-V3, DeepSeek-Coder, and specialized models
- **Azure OpenAI**: Enterprise-grade OpenAI models
- **OpenRouter**: Access to 200+ models from various providers
- **Ollama**: Local model execution with privacy
- **Advanced Features**
- Automatic model capability detection
- Dynamic tool execution based on model features
- Intelligent fallback mechanisms
- Provider-specific optimizations
### Token & Usage Management
MCPOmni Connect now provides advanced controls and visibility over your API usage and resource limits.
#### View API Usage Stats
Use the `/api_stats` command to see your current usage:
```bash
/api_stats
```
This will display:
- **Total tokens used**
- **Total requests made**
- **Total response tokens**
- **Number of requests**
#### Set Usage Limits
You can set limits to automatically stop execution when thresholds are reached:
- **Total Request Limit:**
Set the maximum number of requests allowed in a session.
- **Total Token Usage Limit:**
Set the maximum number of tokens that can be used.
- **Tool Call Timeout:**
Set the maximum time (in seconds) a tool call can take before being terminated.
- **Max Steps:**
Set the maximum number of steps the agent can take before stopping.
You can configure these in your `servers_config.json` under the `AgentConfig` section:
```json
"AgentConfig": {
"tool_call_timeout": 30, // Tool call timeout in seconds
"max_steps": 15, // Max number of steps before termination
"request_limit": 1000, // Max number of requests allowed
"total_tokens_limit": 100000 // Max number of tokens allowed
}
```
- When any of these limits are reached, the agent will automatically stop running and notify you.
#### Example Commands
```bash
# Check your current API usage and limits
/api_stats
# Set a new request limit (example)
# (This can be done by editing servers_config.json or via future CLI commands)
```
## 🔧 Advanced Features
### Tool Orchestration
```python
# Example of automatic tool chaining if the tool is available in the servers connected
User: "Find charging stations near Silicon Valley and check their current status"
# Client automatically:
1. Uses Google Maps API to locate Silicon Valley
2. Searches for charging stations in the area
3. Checks station status through EV network API
4. Formats and presents results
```
### Resource Analysis
```python
# Automatic resource processing
User: "Analyze the contents of /path/to/document.pdf"
# Client automatically:
1. Identifies resource type
2. Extracts content
3. Processes through LLM
4. Provides intelligent summary
```
### Demo

## 🔍 Troubleshooting
> **🚨 Most Common Issues**: Check [Quick Fixes](#-quick-fixes-common-issues) below first!
>
> **📖 For comprehensive setup help**: See [⚙️ Configuration Guide](#️-configuration-guide) | [🧠 Vector DB Setup](#-vector-database--smart-memory-setup-complete-guide)
### 🚨 **Quick Fixes (Common Issues)**
| **Error** | **Quick Fix** |
|-----------|---------------|
| `Error: Invalid API key` | Check your `.env` file: `LLM_API_KEY=your_actual_key` |
| `ModuleNotFoundError: mcpomni_connect` | Run: `uv add mcpomni-connect` or `pip install mcpomni-connect` |
| `Connection refused` | Ensure MCP server is running before connecting |
| `ChromaDB not available` | Install: `pip install chromadb` - [See Vector DB Setup](#-vector-database--smart-memory-setup-complete-guide) |
| `Redis connection failed` | Install Redis or use in-memory mode (default) |
| `Tool execution failed` | Check tool permissions and arguments |
### Detailed Issues and Solutions
1. **Connection Issues**
```bash
Error: Could not connect to MCP server
```
- Check if the server is running
- Verify server configuration in `servers_config.json`
- Ensure network connectivity
- Check server logs for errors
- **See [Transport Types & Authentication](#-transport-types--authentication) for detailed setup**
2. **API Key Issues**
```bash
Error: Invalid API key
```
- Verify API key is correctly set in `.env`
- Check if API key has required permissions
- Ensure API key is for correct environment (production/development)
- **See [Configuration Files Overview](#configuration-files-overview) for correct setup**
3. **Redis Connection**
```bash
Error: Could not connect to Redis
```
- Verify Redis server is running
- Check Redis connection settings in `.env`
- Ensure Redis password is correct (if configured)
4. **Tool Execution Failures**
```bash
Error: Tool execution failed
```
- Check tool availability on connected servers
- Verify tool permissions
- Review tool arguments for correctness
### Debug Mode
Enable debug mode for detailed logging:
```bash
/debug
```
### **Getting Help**
1. **First**: Check the [Quick Fixes](#-quick-fixes-common-issues) above
2. **Examples**: Study working examples in the `examples/` directory
3. **Issues**: Search [GitHub Issues](https://github.com/Abiorh001/mcp_omni_connect/issues) for similar problems
4. **New Issue**: [Create a new issue](https://github.com/Abiorh001/mcp_omni_connect/issues/new) with detailed information
## 🤝 Contributing
We welcome contributions! See our [Contributing Guide](CONTRIBUTING.md) for details.
## 📖 Documentation
Complete documentation is available at: **[MCPOmni Connect Docs](https://abiorh001.github.io/mcp_omni_connect)**
To build documentation locally:
```bash
./docs.sh serve # Start development server at http://127.0.0.1:8080
./docs.sh build # Build static documentation
```
## 📄 License
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
## 📬 Contact & Support
- **Author**: Abiola Adeshina
- **Email**: abiolaadedayo1993@gmail.com
- **GitHub Issues**: [Report a bug](https://github.com/Abiorh001/mcp_omni_connect/issues)
---
<p align="center">Built with ❤️ by the MCPOmni Connect Team</p>
Connection Info
You Might Also Like
MarkItDown MCP
Converting files and office documents to Markdown.
Time
Obtaining current time information and converting time between different...
Filesystem
Model Context Protocol Servers
Sequential Thinking
Offers a structured approach to dynamic and reflective problem-solving,...
Git
Model Context Protocol Servers
Context 7
Context7 MCP Server -- Up-to-date code documentation for LLMs and AI code editors