Content
# Self-Evolving Digital Twin MCP Server
A sophisticated digital twin system that simulates user-specific responses, maintains evolving personality profiles, and manages vectorized memories using advanced language models.
## 🌟 Features
- **Personality Simulation**: Generate contextually appropriate responses based on personality traits and communication style
- **Memory Management**: Store and retrieve vectorized memories with semantic search capabilities
- **Self-Evolution**: Automatically update personality traits and knowledge based on interactions
- **Reflection System**: Perform periodic self-reflection and summarization of experiences
- **Modular Architecture**: Easily extensible system with clear separation of concerns
## 🚀 Quick Start
### Prerequisites
- Python 3.8+
- OpenAI API key
- HuggingFace API key (optional, for DialoGPT)
### Installation
1. Clone the repository:
```bash
git clone https://github.com/yourusername/digital-twin-mcp.git
cd digital-twin-mcp
```
2. Create and activate a virtual environment:
```bash
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
```
3. Install dependencies:
```bash
pip install -e .
```
4. Create a `.env` file in the project root:
```env
OPENAI_API_KEY=your_openai_api_key_here
OPENAI_MODEL=gpt-4
HUGGINGFACE_API_KEY=your_huggingface_api_key_here
DATABASE_URL=sqlite:///digital_twin.db
```
## 📁 Project Structure
```
digital-twin-mcp/
├── src/
│ └── fastmcp/
│ └── digital_twin/
│ ├── __init__.py
│ ├── personality.py # Personality system
│ ├── memory.py # Memory management
│ ├── response_generator.py # Response generation
│ ├── interaction.py # Interaction handling
│ ├── server.py # FastAPI server
│ └── prompts/ # Prompt templates
│ ├── base_personality.txt
│ ├── reply_simulation.txt
│ ├── memory_update.txt
│ └── reflection.txt
├── examples/
│ └── digital_twin_example.py # Usage examples
├── tests/ # Test suite
├── pyproject.toml # Project configuration
└── README.md # This file
```
## 💡 Usage
### Basic Example
```python
from fastmcp.digital_twin import DigitalTwinInteraction, ResponseGenerator, Memory, Personality
# Initialize components
response_generator = ResponseGenerator()
memory = Memory()
personality = Personality()
# Create interaction handler
interaction = DigitalTwinInteraction(
response_generator=response_generator,
memory=memory,
personality=personality
)
# Simulate a response
response, metadata = await interaction.simulate_response(
user_input="Hello, how are you?",
context={"mood": "casual"}
)
# Perform reflection
insights = await interaction.reflect_chain(time_period="1w")
```
### Advanced Features
1. **Memory Management**:
```python
# Add a memory
await memory.add_memory(
content="User prefers formal communication",
memory_type="preference",
metadata={"importance": 0.8}
)
# Retrieve relevant memories
relevant_memories = await memory.get_relevant_memories(
query="communication style",
limit=5
)
```
2. **Personality Evolution**:
```python
# Get current personality
traits = personality.get_traits()
# Update personality
await personality.process_update({
"trait": "formality",
"value": 0.8,
"reason": "User preference"
})
```
3. **Interaction Routing**:
```python
# Route through different chains
result = await interaction.route_interaction(
user_input="Tell me about yourself",
interaction_type="simulate",
context={"depth": "detailed"}
)
```
## 🔧 Configuration
The system can be configured through environment variables or a configuration file. Key settings include:
- `OPENAI_MODEL`: Language model to use (default: "gpt-4")
- `MAX_MEMORIES`: Maximum number of memories to store (default: 1000)
- `PERSONALITY_UPDATE_INTERVAL`: How often to update personality (default: 3600s)
- `MEMORY_CHUNK_SIZE`: Size of memory chunks (default: 1000)
## 📝 Contributing
1. Fork the repository
2. Create a feature branch
3. Commit your changes
4. Push to the branch
5. Create a Pull Request
## 📄 License
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
## 🙏 Acknowledgments
- OpenAI for GPT models
- HuggingFace for DialoGPT
- FastAPI for the web framework
- SQLAlchemy for database management
Connection Info
You Might Also Like
Fetch
Model Context Protocol Servers
semantic-kernel
Integrate cutting-edge LLM technology quickly and easily into your apps
repomix
Repomix packages your codebase into AI-friendly formats for seamless integration.
Serena
A powerful coding agent toolkit providing semantic retrieval and editing...
Blender
BlenderMCP integrates Blender with Claude AI for enhanced 3D modeling.
pydantic-ai
GenAI Agent Framework, the Pydantic way