Content
<p align="center">
<img src="logo.png" alt="Google Analytics MCP Logo" width="120" />
# Google Analytics MCP Server
mcp-name: io.github.surendranb/google-analytics-mcp
[](https://badge.fury.io/py/google-analytics-mcp)
[](https://pepy.tech/projects/google-analytics-mcp)
[](https://github.com/surendranb/google-analytics-mcp/stargazers)
[](https://github.com/surendranb/google-analytics-mcp/network/members)
[](https://www.python.org/downloads/)
[](https://opensource.org/licenses/MIT)
[](https://github.com/surendranb/google-analytics-mcp)
Connect Google Analytics 4 data to Claude, Cursor and other MCP clients. Query your website traffic, user behavior, and analytics data in natural language with access to 200+ GA4 dimensions and metrics.
**Compatible with:** Claude, Cursor and other MCP clients.
I also built a [Google Search Console MCP](https://github.com/surendranb/google-search-console-mcp) that enables you to mix & match the data from both the sources
</p>
---
## Prerequisites
**Check your Python setup:**
```bash
# Check Python version (need 3.10+)
python --version
python3 --version
# Check pip
pip --version
pip3 --version
```
**Required:**
- Python 3.10 or higher
- Google Analytics 4 property with data
- Service account with Analytics Reporting API access
---
## Step 1: Setup Google Analytics Credentials
### Create Service Account in Google Cloud Console
1. Go to [Google Cloud Console](https://console.cloud.google.com/)
2. **Create or select a project**:
- New project: Click "New Project" → Enter project name → Create
- Existing project: Select from dropdown
3. **Enable the Analytics APIs**:
- Go to "APIs & Services" → "Library"
- Search for "Google Analytics Data API" → Click "Enable"
4. **Create Service Account**:
- Go to "APIs & Services" → "Credentials"
- Click "Create Credentials" → "Service Account"
- Enter name (e.g., "ga4-mcp-server")
- Click "Create and Continue"
- Skip role assignment → Click "Done"
5. **Download JSON Key**:
- Click your service account
- Go to "Keys" tab → "Add Key" → "Create New Key"
- Select "JSON" → Click "Create"
- Save the JSON file - you'll need its path
### Add Service Account to GA4
1. **Get service account email**:
- Open the JSON file
- Find the `client_email` field
- Copy the email (format: `ga4-mcp-server@your-project.iam.gserviceaccount.com`)
2. **Add to GA4 property**:
- Go to [Google Analytics](https://analytics.google.com/)
- Select your GA4 property
- Click "Admin" (gear icon at bottom left)
- Under "Property" → Click "Property access management"
- Click "+" → "Add users"
- Paste the service account email
- Select "Viewer" role
- Uncheck "Notify new users by email"
- Click "Add"
### Find Your GA4 Property ID
1. In [Google Analytics](https://analytics.google.com/), select your property
2. Click "Admin" (gear icon)
3. Under "Property" → Click "Property details"
4. Copy the **Property ID** (numeric, e.g., `123456789`)
- **Note**: This is different from the "Measurement ID" (starts with G-)
### Test Your Setup (Optional)
Verify your credentials:
```bash
pip install google-analytics-data
```
Create a test script (`test_ga4.py`):
```python
import os
from google.analytics.data_v1beta import BetaAnalyticsDataClient
# Set credentials path
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = "/path/to/your/service-account-key.json"
# Test connection
client = BetaAnalyticsDataClient()
print("✅ GA4 credentials working!")
```
Run the test:
```bash
python test_ga4.py
```
If you see "✅ GA4 credentials working!" you're ready to proceed.
---
## Step 2: Install the MCP Server
Choose one method:
### Method A: pip install (Recommended)
```bash
pip install google-analytics-mcp
```
**MCP Configuration:**
First, check your Python command:
```bash
python3 --version
python --version
```
Then use the appropriate configuration:
If `python3 --version` worked:
```json
{
"mcpServers": {
"ga4-analytics": {
"command": "python3",
"args": ["-m", "ga4_mcp_server"],
"env": {
"GOOGLE_APPLICATION_CREDENTIALS": "/path/to/your/service-account-key.json",
"GA4_PROPERTY_ID": "123456789"
}
}
}
}
```
If `python --version` worked:
```json
{
"mcpServers": {
"ga4-analytics": {
"command": "python",
"args": ["-m", "ga4_mcp_server"],
"env": {
"GOOGLE_APPLICATION_CREDENTIALS": "/path/to/your/service-account-key.json",
"GA4_PROPERTY_ID": "123456789"
}
}
}
}
```
### Method B: GitHub download
```bash
git clone https://github.com/surendranb/google-analytics-mcp.git
cd google-analytics-mcp
python3 -m venv venv
source venv/bin/activate
pip install -r requirements.txt
```
**MCP Configuration:**
```json
{
"mcpServers": {
"ga4-analytics": {
"command": "/full/path/to/ga4-mcp-server/venv/bin/python",
"args": ["/full/path/to/ga4-mcp-server/ga4_mcp_server.py"],
"env": {
"GOOGLE_APPLICATION_CREDENTIALS": "/path/to/your/service-account-key.json",
"GA4_PROPERTY_ID": "123456789"
}
}
}
}
```
---
## Step 3: Update Configuration
**Replace these placeholders in your MCP configuration:**
- `/path/to/your/service-account-key.json` with your JSON file path
- `123456789` with your GA4 Property ID
- `/full/path/to/ga4-mcp-server/` with your download path (Method B only)
---
## Usage
Once configured, ask your MCP client questions like:
### Discovery & Exploration
- What GA4 dimension categories are available?
- Show me all ecommerce metrics
- What dimensions can I use for geographic analysis?
### Traffic Analysis
- What's my website traffic for the past week?
- Show me user metrics by city for last month
- Compare bounce rates between different date ranges
### Multi-Dimensional Analysis
- Show me revenue by country and device category for last 30 days
- Analyze sessions and conversions by campaign and source/medium
- Compare user engagement across different page paths and traffic sources
### E-commerce Analysis
- What are my top-performing products by revenue?
- Show me conversion rates by traffic source and device type
- Analyze purchase behavior by user demographics
---
## Quick Start Examples
Try these example queries to see the MCP's analytical capabilities:
### 1. Geographic Distribution
```
Show me a map of visitors by city for the last 30 days, with a breakdown of new vs returning users
```
This demonstrates:
- Geographic analysis
- User segmentation
- Time-based filtering
- Data visualization
### 2. User Behavior Analysis
```
Compare average session duration and pages per session by device category and browser over the last 90 days
```
This demonstrates:
- Multi-dimensional analysis
- Time series comparison
- User engagement metrics
- Technology segmentation
### 3. Traffic Source Performance
```
Show me conversion rates and revenue by traffic source and campaign, comparing last 30 days vs previous 30 days
```
This demonstrates:
- Marketing performance analysis
- Period-over-period comparison
- Conversion tracking
- Revenue attribution
### 4. Content Performance
```
What are my top 10 pages by engagement rate, and how has their performance changed over the last 3 months?
```
This demonstrates:
- Content analysis
- Trend analysis
- Engagement metrics
- Ranking and sorting
---
## 🚀 Performance Optimizations
This MCP server includes **built-in optimizations** to prevent context window crashes and ensure smooth operation:
### Smart Data Volume Management
- **Automatic row estimation** - Checks data volume before fetching
- **Interactive warnings** - Alerts when queries would return >2,500 rows
- **Optimization suggestions** - Provides specific recommendations to reduce data volume
### Server-Side Processing
- **Intelligent aggregation** - Automatically aggregates data when beneficial (e.g., totals across time periods)
- **Smart sorting** - Returns most relevant data first (recent dates, highest values)
- **Efficient filtering** - Leverages GA4's server-side filtering capabilities
### User Control Parameters
- `limit` - Set maximum number of rows to return
- `proceed_with_large_dataset=True` - Override warnings for large datasets
- `enable_aggregation=False` - Disable automatic aggregation
- `estimate_only=True` - Get row count estimates without fetching data
### Example: Handling Large Datasets
```python
# This query would normally return 2,605 rows and crash context window
get_ga4_data(
dimensions=["date", "pagePath", "country"],
date_range_start="90daysAgo"
)
# Returns: {"warning": True, "estimated_rows": 2605, "suggestions": [...]}
# Use monthly aggregation instead
get_ga4_data(
dimensions=["month", "pagePath", "country"],
date_range_start="90daysAgo"
)
# Returns: Clean monthly data with manageable row count
```
---
## Available Tools
The server provides 5 main tools with **built-in optimization** to prevent context window crashes:
1. **`get_ga4_data`** - Retrieve GA4 data with custom dimensions and metrics
- **Smart data volume warnings** - Alerts when queries would return >2,500 rows
- **Server-side aggregation** - Automatically aggregates data when beneficial
- **Intelligent sorting** - Returns most relevant data first
- **User control parameters** - `limit`, `proceed_with_large_dataset`, `enable_aggregation`
2. **`list_dimension_categories`** - Browse available dimension categories
3. **`list_metric_categories`** - Browse available metric categories
4. **`get_dimensions_by_category`** - Get dimensions for a specific category
5. **`get_metrics_by_category`** - Get metrics for a specific category
---
## Dimensions & Metrics
Access to **200+ GA4 dimensions and metrics** organized by category:
### Dimension Categories
- **Time**: date, hour, month, year, etc.
- **Geography**: country, city, region
- **Technology**: browser, device, operating system
- **Traffic Source**: campaign, source, medium, channel groups
- **Content**: page paths, titles, content groups
- **E-commerce**: item details, transaction info
- **User Demographics**: age, gender, language
- **Google Ads**: campaign, ad group, keyword data
- And 10+ more categories
### Metric Categories
- **User Metrics**: totalUsers, newUsers, activeUsers
- **Session Metrics**: sessions, bounceRate, engagementRate
- **E-commerce**: totalRevenue, transactions, conversions
- **Events**: eventCount, conversions, event values
- **Advertising**: adRevenue, returnOnAdSpend
- And more specialized metrics
---
## Troubleshooting
**If you get "No module named ga4_mcp_server" (Method A):**
```bash
pip3 install --user google-analytics-mcp
```
**If you get "executable file not found":**
- Try the other Python command (`python` vs `python3`)
- Use `pip3` instead of `pip` if needed
**Permission errors:**
```bash
# Try user install instead of system-wide
pip install --user google-analytics-mcp
```
**Credentials not working:**
1. **Verify the JSON file path** is correct and accessible
2. **Check service account permissions**:
- Go to Google Cloud Console → IAM & Admin → IAM
- Find your service account → Check permissions
3. **Verify GA4 access**:
- GA4 → Admin → Property access management
- Check for your service account email
4. **Verify ID type**:
- Property ID: numeric (e.g., `123456789`) ✅
- Measurement ID: starts with G- (e.g., `G-XXXXXXXXXX`) ❌
**API quota/rate limit errors:**
- GA4 has daily quotas and rate limits
- Try reducing the date range in your queries
- Wait a few minutes between large requests
---
## Project Structure
```
google-analytics-mcp/
├── ga4_mcp_server.py # Main MCP server
├── ga4_dimensions.json # All available GA4 dimensions
├── ga4_metrics.json # All available GA4 metrics
├── requirements.txt # Python dependencies
├── pyproject.toml # Package configuration
├── README.md # This file
└── claude-config-template.json # MCP configuration template
```
---
## License
MIT License
Connection Info
You Might Also Like
MarkItDown MCP
MarkItDown-MCP is a lightweight server for converting URIs to Markdown.
Github
The GitHub MCP Server connects AI tools to manage repositories, automate...

apisix
Apache APISIX is an API Gateway that provides dynamic routing and management...
opik
Opik is a versatile tool for managing and optimizing machine learning experiments.

MCP Toolbox for Databases
MCP Toolbox for Databases is an open-source server simplifying database tool...

sqlglot
SQLGlot is a no-dependency SQL parser and transpiler supporting 31 dialects.